MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnv0 Structured version   Unicode version

Theorem radcnv0 20322
Description: Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
Assertion
Ref Expression
radcnv0  |-  ( ph  ->  0  e.  { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
Distinct variable groups:    x, n, A    G, r
Allowed substitution hints:    ph( x, n, r)    A( r)    G( x, n)

Proof of Theorem radcnv0
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 0re 9081 . . 3  |-  0  e.  RR
21a1i 11 . 2  |-  ( ph  ->  0  e.  RR )
3 nn0uz 10510 . . 3  |-  NN0  =  ( ZZ>= `  0 )
4 0z 10283 . . . 4  |-  0  e.  ZZ
54a1i 11 . . 3  |-  ( ph  ->  0  e.  ZZ )
6 snfi 7179 . . . 4  |-  { 0 }  e.  Fin
76a1i 11 . . 3  |-  ( ph  ->  { 0 }  e.  Fin )
8 0nn0 10226 . . . . 5  |-  0  e.  NN0
98a1i 11 . . . 4  |-  ( ph  ->  0  e.  NN0 )
109snssd 3935 . . 3  |-  ( ph  ->  { 0 }  C_  NN0 )
11 ifid 3763 . . . 4  |-  if ( k  e.  { 0 } ,  ( ( G `  0 ) `
 k ) ,  ( ( G ` 
0 ) `  k
) )  =  ( ( G `  0
) `  k )
12 0cn 9074 . . . . . . . . 9  |-  0  e.  CC
1312a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
14 pser.g . . . . . . . . 9  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1514pserval2 20317 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  k  e.  NN0 )  -> 
( ( G ` 
0 ) `  k
)  =  ( ( A `  k )  x.  ( 0 ^ k ) ) )
1613, 15sylan 458 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  =  ( ( A `  k
)  x.  ( 0 ^ k ) ) )
1716adantr 452 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( G `  0
) `  k )  =  ( ( A `
 k )  x.  ( 0 ^ k
) ) )
18 simpr 448 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
19 elnn0 10213 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
2018, 19sylib 189 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  e.  NN  \/  k  =  0 ) )
2120ord 367 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  NN  ->  k  =  0 ) )
22 elsn 3821 . . . . . . . . . . 11  |-  ( k  e.  { 0 }  <-> 
k  =  0 )
2321, 22syl6ibr 219 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  NN  ->  k  e.  { 0 } ) )
2423con1d 118 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( -.  k  e.  { 0 }  ->  k  e.  NN ) )
2524imp 419 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  k  e.  NN )
26250expd 11529 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
0 ^ k )  =  0 )
2726oveq2d 6089 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( A `  k
)  x.  ( 0 ^ k ) )  =  ( ( A `
 k )  x.  0 ) )
28 radcnv.a . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
2928ffvelrnda 5862 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( A `  k )  e.  CC )
3029adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  ( A `  k )  e.  CC )
3130mul01d 9255 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( A `  k
)  x.  0 )  =  0 )
3217, 27, 313eqtrd 2471 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  -.  k  e.  { 0 } )  ->  (
( G `  0
) `  k )  =  0 )
3332ifeq2da 3757 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
k  e.  { 0 } ,  ( ( G `  0 ) `
 k ) ,  ( ( G ` 
0 ) `  k
) )  =  if ( k  e.  {
0 } ,  ( ( G `  0
) `  k ) ,  0 ) )
3411, 33syl5eqr 2481 . . 3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  =  if ( k  e.  {
0 } ,  ( ( G `  0
) `  k ) ,  0 ) )
3510sselda 3340 . . . 4  |-  ( (
ph  /\  k  e.  { 0 } )  -> 
k  e.  NN0 )
3614, 28, 13psergf 20318 . . . . 5  |-  ( ph  ->  ( G `  0
) : NN0 --> CC )
3736ffvelrnda 5862 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  0 ) `  k )  e.  CC )
3835, 37syldan 457 . . 3  |-  ( (
ph  /\  k  e.  { 0 } )  -> 
( ( G ` 
0 ) `  k
)  e.  CC )
393, 5, 7, 10, 34, 38fsumcvg3 12513 . 2  |-  ( ph  ->  seq  0 (  +  ,  ( G ` 
0 ) )  e. 
dom 
~~>  )
40 fveq2 5720 . . . . 5  |-  ( r  =  0  ->  ( G `  r )  =  ( G ` 
0 ) )
4140seqeq3d 11321 . . . 4  |-  ( r  =  0  ->  seq  0 (  +  , 
( G `  r
) )  =  seq  0 (  +  , 
( G `  0
) ) )
4241eleq1d 2501 . . 3  |-  ( r  =  0  ->  (  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  <->  seq  0 (  +  , 
( G `  0
) )  e.  dom  ~~>  ) )
4342elrab 3084 . 2  |-  ( 0  e.  { r  e.  RR  |  seq  0
(  +  ,  ( G `  r ) )  e.  dom  ~~>  }  <->  ( 0  e.  RR  /\  seq  0 (  +  , 
( G `  0
) )  e.  dom  ~~>  ) )
442, 39, 43sylanbrc 646 1  |-  ( ph  ->  0  e.  { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701   ifcif 3731   {csn 3806    e. cmpt 4258   dom cdm 4870   -->wf 5442   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8978   RRcr 8979   0cc0 8980    + caddc 8983    x. cmul 8985   NNcn 9990   NN0cn0 10211   ZZcz 10272    seq cseq 11313   ^cexp 11372    ~~> cli 12268
This theorem is referenced by:  radcnvcl  20323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-n0 10212  df-z 10273  df-uz 10479  df-rp 10603  df-fz 11034  df-seq 11314  df-exp 11373  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-clim 12272
  Copyright terms: Public domain W3C validator