MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlt2 Structured version   Unicode version

Theorem radcnvlt2 20336
Description: If  X is within the open disk of radius  R centered at zero, then the infinite series converges at  X. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
radcnv.a  |-  ( ph  ->  A : NN0 --> CC )
radcnv.r  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
radcnvlt.x  |-  ( ph  ->  X  e.  CC )
radcnvlt.a  |-  ( ph  ->  ( abs `  X
)  <  R )
Assertion
Ref Expression
radcnvlt2  |-  ( ph  ->  seq  0 (  +  ,  ( G `  X ) )  e. 
dom 
~~>  )
Distinct variable groups:    x, n, A    G, r
Allowed substitution hints:    ph( x, n, r)    A( r)    R( x, n, r)    G( x, n)    X( x, n, r)

Proof of Theorem radcnvlt2
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10521 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0z 10294 . . 3  |-  0  e.  ZZ
32a1i 11 . 2  |-  ( ph  ->  0  e.  ZZ )
4 pser.g . . . 4  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
5 radcnv.a . . . 4  |-  ( ph  ->  A : NN0 --> CC )
6 radcnvlt.x . . . 4  |-  ( ph  ->  X  e.  CC )
74, 5, 6psergf 20329 . . 3  |-  ( ph  ->  ( G `  X
) : NN0 --> CC )
8 fvco3 5801 . . 3  |-  ( ( ( G `  X
) : NN0 --> CC  /\  k  e.  NN0 )  -> 
( ( abs  o.  ( G `  X ) ) `  k )  =  ( abs `  (
( G `  X
) `  k )
) )
97, 8sylan 459 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( abs  o.  ( G `  X ) ) `  k )  =  ( abs `  ( ( G `  X ) `
 k ) ) )
107ffvelrnda 5871 . 2  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( G `  X ) `  k )  e.  CC )
11 radcnv.r . . . 4  |-  R  =  sup ( { r  e.  RR  |  seq  0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
12 radcnvlt.a . . . 4  |-  ( ph  ->  ( abs `  X
)  <  R )
13 id 21 . . . . . 6  |-  ( m  =  k  ->  m  =  k )
14 fveq2 5729 . . . . . . 7  |-  ( m  =  k  ->  (
( G `  X
) `  m )  =  ( ( G `
 X ) `  k ) )
1514fveq2d 5733 . . . . . 6  |-  ( m  =  k  ->  ( abs `  ( ( G `
 X ) `  m ) )  =  ( abs `  (
( G `  X
) `  k )
) )
1613, 15oveq12d 6100 . . . . 5  |-  ( m  =  k  ->  (
m  x.  ( abs `  ( ( G `  X ) `  m
) ) )  =  ( k  x.  ( abs `  ( ( G `
 X ) `  k ) ) ) )
1716cbvmptv 4301 . . . 4  |-  ( m  e.  NN0  |->  ( m  x.  ( abs `  (
( G `  X
) `  m )
) ) )  =  ( k  e.  NN0  |->  ( k  x.  ( abs `  ( ( G `
 X ) `  k ) ) ) )
184, 5, 11, 6, 12, 17radcnvlt1 20335 . . 3  |-  ( ph  ->  (  seq  0 (  +  ,  ( m  e.  NN0  |->  ( m  x.  ( abs `  (
( G `  X
) `  m )
) ) ) )  e.  dom  ~~>  /\  seq  0 (  +  , 
( abs  o.  ( G `  X )
) )  e.  dom  ~~>  ) )
1918simprd 451 . 2  |-  ( ph  ->  seq  0 (  +  ,  ( abs  o.  ( G `  X ) ) )  e.  dom  ~~>  )
201, 3, 9, 10, 19abscvgcvg 12599 1  |-  ( ph  ->  seq  0 (  +  ,  ( G `  X ) )  e. 
dom 
~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   {crab 2710   class class class wbr 4213    e. cmpt 4267   dom cdm 4879    o. ccom 4883   -->wf 5451   ` cfv 5455  (class class class)co 6082   supcsup 7446   CCcc 8989   RRcr 8990   0cc0 8991    + caddc 8994    x. cmul 8996   RR*cxr 9120    < clt 9121   NN0cn0 10222   ZZcz 10283    seq cseq 11324   ^cexp 11383   abscabs 12040    ~~> cli 12279
This theorem is referenced by:  pserulm  20339  pserdvlem2  20345  abelthlem3  20350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069  ax-addf 9070  ax-mulf 9071
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-pm 7022  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-sup 7447  df-oi 7480  df-card 7827  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-ico 10923  df-icc 10924  df-fz 11045  df-fzo 11137  df-fl 11203  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-limsup 12266  df-clim 12283  df-rlim 12284  df-sum 12481
  Copyright terms: Public domain W3C validator