MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralcom2 Unicode version

Theorem ralcom2 2704
Description: Commutation of restricted quantifiers. Note that  x and  y needn't be distinct (this makes the proof longer). (Contributed by NM, 24-Nov-1994.) (Proof shortened by Mario Carneiro, 17-Oct-2016.)
Assertion
Ref Expression
ralcom2  |-  ( A. x  e.  A  A. y  e.  A  ph  ->  A. y  e.  A  A. x  e.  A  ph )
Distinct variable groups:    y, A    x, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem ralcom2
StepHypRef Expression
1 eleq1 2343 . . . . . . 7  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
21sps 1739 . . . . . 6  |-  ( A. x  x  =  y  ->  ( x  e.  A  <->  y  e.  A ) )
32imbi1d 308 . . . . . . . . 9  |-  ( A. x  x  =  y  ->  ( ( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ph )
) )
43dral1 1905 . . . . . . . 8  |-  ( A. x  x  =  y  ->  ( A. x ( x  e.  A  ->  ph )  <->  A. y ( y  e.  A  ->  ph )
) )
54bicomd 192 . . . . . . 7  |-  ( A. x  x  =  y  ->  ( A. y ( y  e.  A  ->  ph )  <->  A. x ( x  e.  A  ->  ph )
) )
6 df-ral 2548 . . . . . . 7  |-  ( A. y  e.  A  ph  <->  A. y
( y  e.  A  ->  ph ) )
7 df-ral 2548 . . . . . . 7  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
85, 6, 73bitr4g 279 . . . . . 6  |-  ( A. x  x  =  y  ->  ( A. y  e.  A  ph  <->  A. x  e.  A  ph ) )
92, 8imbi12d 311 . . . . 5  |-  ( A. x  x  =  y  ->  ( ( x  e.  A  ->  A. y  e.  A  ph )  <->  ( y  e.  A  ->  A. x  e.  A  ph ) ) )
109dral1 1905 . . . 4  |-  ( A. x  x  =  y  ->  ( A. x ( x  e.  A  ->  A. y  e.  A  ph )  <->  A. y ( y  e.  A  ->  A. x  e.  A  ph ) ) )
11 df-ral 2548 . . . 4  |-  ( A. x  e.  A  A. y  e.  A  ph  <->  A. x
( x  e.  A  ->  A. y  e.  A  ph ) )
12 df-ral 2548 . . . 4  |-  ( A. y  e.  A  A. x  e.  A  ph  <->  A. y
( y  e.  A  ->  A. x  e.  A  ph ) )
1310, 11, 123bitr4g 279 . . 3  |-  ( A. x  x  =  y  ->  ( A. x  e.  A  A. y  e.  A  ph  <->  A. y  e.  A  A. x  e.  A  ph ) )
1413biimpd 198 . 2  |-  ( A. x  x  =  y  ->  ( A. x  e.  A  A. y  e.  A  ph  ->  A. y  e.  A  A. x  e.  A  ph ) )
15 nfnae 1896 . . . . 5  |-  F/ y  -.  A. x  x  =  y
16 nfra2 2597 . . . . 5  |-  F/ y A. x  e.  A  A. y  e.  A  ph
1715, 16nfan 1771 . . . 4  |-  F/ y ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )
18 nfnae 1896 . . . . . . . 8  |-  F/ x  -.  A. x  x  =  y
19 nfra1 2593 . . . . . . . 8  |-  F/ x A. x  e.  A  A. y  e.  A  ph
2018, 19nfan 1771 . . . . . . 7  |-  F/ x
( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )
21 nfcvf 2441 . . . . . . . . 9  |-  ( -. 
A. x  x  =  y  ->  F/_ x y )
2221adantr 451 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  -> 
F/_ x y )
23 nfcvd 2420 . . . . . . . 8  |-  ( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  -> 
F/_ x A )
2422, 23nfeld 2434 . . . . . . 7  |-  ( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  ->  F/ x  y  e.  A )
2520, 24nfan1 1822 . . . . . 6  |-  F/ x
( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  /\  y  e.  A )
26 rsp2 2605 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  A  ph  ->  ( ( x  e.  A  /\  y  e.  A
)  ->  ph ) )
2726ancomsd 440 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ph  ->  ( ( y  e.  A  /\  x  e.  A
)  ->  ph ) )
2827expdimp 426 . . . . . . 7  |-  ( ( A. x  e.  A  A. y  e.  A  ph 
/\  y  e.  A
)  ->  ( x  e.  A  ->  ph )
)
2928adantll 694 . . . . . 6  |-  ( ( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  /\  y  e.  A
)  ->  ( x  e.  A  ->  ph )
)
3025, 29ralrimi 2624 . . . . 5  |-  ( ( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  /\  y  e.  A
)  ->  A. x  e.  A  ph )
3130ex 423 . . . 4  |-  ( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  ->  ( y  e.  A  ->  A. x  e.  A  ph ) )
3217, 31ralrimi 2624 . . 3  |-  ( ( -.  A. x  x  =  y  /\  A. x  e.  A  A. y  e.  A  ph )  ->  A. y  e.  A  A. x  e.  A  ph )
3332ex 423 . 2  |-  ( -. 
A. x  x  =  y  ->  ( A. x  e.  A  A. y  e.  A  ph  ->  A. y  e.  A  A. x  e.  A  ph )
)
3414, 33pm2.61i 156 1  |-  ( A. x  e.  A  A. y  e.  A  ph  ->  A. y  e.  A  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   F/_wnfc 2406   A.wral 2543
This theorem is referenced by:  tz7.48lem  6453  tratrb  28299  tratrbVD  28637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548
  Copyright terms: Public domain W3C validator