Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  raldifsni Structured version   Unicode version

Theorem raldifsni 26734
 Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
raldifsni

Proof of Theorem raldifsni
StepHypRef Expression
1 eldifsn 3927 . . . 4
21imbi1i 316 . . 3
3 impexp 434 . . 3
4 df-ne 2601 . . . . . 6
54imbi1i 316 . . . . 5
6 con34b 284 . . . . 5
75, 6bitr4i 244 . . . 4
87imbi2i 304 . . 3
92, 3, 83bitri 263 . 2
109ralbii2 2733 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359   wceq 1652   wcel 1725   wne 2599  wral 2705   cdif 3317  csn 3814 This theorem is referenced by:  islindf4  27285 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-v 2958  df-dif 3323  df-sn 3820
 Copyright terms: Public domain W3C validator