MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbidva Unicode version

Theorem raleqbidva 2763
Description: Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
raleqbidva.1  |-  ( ph  ->  A  =  B )
raleqbidva.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
raleqbidva  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem raleqbidva
StepHypRef Expression
1 raleqbidva.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21ralbidva 2572 . 2  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  A  ch )
)
3 raleqbidva.1 . . 3  |-  ( ph  ->  A  =  B )
43raleqdv 2755 . 2  |-  ( ph  ->  ( A. x  e.  A  ch  <->  A. x  e.  B  ch )
)
52, 4bitrd 244 1  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556
This theorem is referenced by:  catpropd  13628  funcpropd  13790  fullpropd  13810  natpropd  13866  gsumpropd2lem  23394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561
  Copyright terms: Public domain W3C validator