Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbii Structured version   Unicode version

Theorem raleqbii 2737
 Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
raleqbii.1
raleqbii.2
Assertion
Ref Expression
raleqbii

Proof of Theorem raleqbii
StepHypRef Expression
1 raleqbii.1 . . . 4
21eleq2i 2502 . . 3
3 raleqbii.2 . . 3
42, 3imbi12i 318 . 2
54ralbii2 2735 1
 Colors of variables: wff set class Syntax hints:   wb 178   wceq 1653   wcel 1726  wral 2707 This theorem is referenced by:  ordtbaslem  17254  iscusp2  18334  elghom  21953  wfrlem5  25544  frrlem5  25588  iscrngo2  26610  tendoset  31558 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-cleq 2431  df-clel 2434  df-ral 2712
 Copyright terms: Public domain W3C validator