MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralinexa Unicode version

Theorem ralinexa 2601
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.)
Assertion
Ref Expression
ralinexa  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)

Proof of Theorem ralinexa
StepHypRef Expression
1 imnan 411 . . 3  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
21ralbii 2580 . 2  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  A. x  e.  A  -.  ( ph  /\  ps )
)
3 ralnex 2566 . 2  |-  ( A. x  e.  A  -.  ( ph  /\  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)
42, 3bitri 240 1  |-  ( A. x  e.  A  ( ph  ->  -.  ps )  <->  -. 
E. x  e.  A  ( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wral 2556   E.wrex 2557
This theorem is referenced by:  kmlem7  7798  kmlem13  7804  lspsncv0  15915  ntreq0  16830  lhop1lem  19376  soseq  24325  ltrnnid  30947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-ral 2561  df-rex 2562
  Copyright terms: Public domain W3C validator