MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmpt Structured version   Unicode version

Theorem ralrnmpt 5870
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1  |-  F  =  ( x  e.  A  |->  B )
ralrnmpt.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralrnmpt  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Distinct variable groups:    x, A    y, B    ch, y    y, F    ps, x
Allowed substitution hints:    ps( y)    ch( x)    A( y)    B( x)    F( x)    V( x, y)

Proof of Theorem ralrnmpt
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21fnmpt 5563 . . . 4  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
3 dfsbcq 3155 . . . . 5  |-  ( w  =  ( F `  z )  ->  ( [. w  /  y ]. ps  <->  [. ( F `  z )  /  y ]. ps ) )
43ralrn 5865 . . . 4  |-  ( F  Fn  A  ->  ( A. w  e.  ran  F
[. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z
)  /  y ]. ps ) )
52, 4syl 16 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z )  /  y ]. ps ) )
6 nfv 1629 . . . . 5  |-  F/ w ps
7 nfsbc1v 3172 . . . . 5  |-  F/ y
[. w  /  y ]. ps
8 sbceq1a 3163 . . . . 5  |-  ( y  =  w  ->  ( ps 
<-> 
[. w  /  y ]. ps ) )
96, 7, 8cbvral 2920 . . . 4  |-  ( A. y  e.  ran  F ps  <->  A. w  e.  ran  F [. w  /  y ]. ps )
109bicomi 194 . . 3  |-  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. y  e.  ran  F ps )
11 nfmpt1 4290 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
121, 11nfcxfr 2568 . . . . . 6  |-  F/_ x F
13 nfcv 2571 . . . . . 6  |-  F/_ x
z
1412, 13nffv 5727 . . . . 5  |-  F/_ x
( F `  z
)
15 nfv 1629 . . . . 5  |-  F/ x ps
1614, 15nfsbc 3174 . . . 4  |-  F/ x [. ( F `  z
)  /  y ]. ps
17 nfv 1629 . . . 4  |-  F/ z
[. ( F `  x )  /  y ]. ps
18 fveq2 5720 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
19 dfsbcq 3155 . . . . 5  |-  ( ( F `  z )  =  ( F `  x )  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2018, 19syl 16 . . . 4  |-  ( z  =  x  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2116, 17, 20cbvral 2920 . . 3  |-  ( A. z  e.  A  [. ( F `  z )  /  y ]. ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps )
225, 10, 213bitr3g 279 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps ) )
231fvmpt2 5804 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( F `  x
)  =  B )
24 dfsbcq 3155 . . . . . 6  |-  ( ( F `  x )  =  B  ->  ( [. ( F `  x
)  /  y ]. ps 
<-> 
[. B  /  y ]. ps ) )
2523, 24syl 16 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  [. B  / 
y ]. ps ) )
26 ralrnmpt.2 . . . . . . 7  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
2726sbcieg 3185 . . . . . 6  |-  ( B  e.  V  ->  ( [. B  /  y ]. ps  <->  ch ) )
2827adantl 453 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. B  / 
y ]. ps  <->  ch )
)
2925, 28bitrd 245 . . . 4  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  ch )
)
3029ralimiaa 2772 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  ( [. ( F `  x )  /  y ]. ps  <->  ch ) )
31 ralbi 2834 . . 3  |-  ( A. x  e.  A  ( [. ( F `  x
)  /  y ]. ps 
<->  ch )  ->  ( A. x  e.  A  [. ( F `  x
)  /  y ]. ps 
<-> 
A. x  e.  A  ch ) )
3230, 31syl 16 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. x  e.  A  [. ( F `  x )  /  y ]. ps  <->  A. x  e.  A  ch ) )
3322, 32bitrd 245 1  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   [.wsbc 3153    e. cmpt 4258   ran crn 4871    Fn wfn 5441   ` cfv 5446
This theorem is referenced by:  rexrnmpt  5871  ac6num  8349  gsumwspan  14781  dfod2  15190  ordtbaslem  17242  ordtrest2lem  17257  cncmp  17445  ptpjopn  17634  ordthmeolem  17823  tsmsfbas  18147  tsmsf1o  18164  prdsxmetlem  18388  prdsbl  18511  metdsf  18868  metdsge  18869  minveclem1  19315  minveclem3b  19319  minveclem6  19325  mbflimsup  19548  xrlimcnp  20797  minvecolem1  22366  minvecolem5  22373  minvecolem6  22374  cvmsss2  24951  comppfsc  26341  prdsbnd  26456  rrnequiv  26498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
  Copyright terms: Public domain W3C validator