MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrnmpt Unicode version

Theorem ralrnmpt 5810
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1  |-  F  =  ( x  e.  A  |->  B )
ralrnmpt.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralrnmpt  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Distinct variable groups:    x, A    y, B    ch, y    y, F    ps, x
Allowed substitution hints:    ps( y)    ch( x)    A( y)    B( x)    F( x)    V( x, y)

Proof of Theorem ralrnmpt
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralrnmpt.1 . . . . 5  |-  F  =  ( x  e.  A  |->  B )
21fnmpt 5504 . . . 4  |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
3 dfsbcq 3099 . . . . 5  |-  ( w  =  ( F `  z )  ->  ( [. w  /  y ]. ps  <->  [. ( F `  z )  /  y ]. ps ) )
43ralrn 5805 . . . 4  |-  ( F  Fn  A  ->  ( A. w  e.  ran  F
[. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z
)  /  y ]. ps ) )
52, 4syl 16 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. z  e.  A  [. ( F `  z )  /  y ]. ps ) )
6 nfv 1626 . . . . 5  |-  F/ w ps
7 nfsbc1v 3116 . . . . 5  |-  F/ y
[. w  /  y ]. ps
8 sbceq1a 3107 . . . . 5  |-  ( y  =  w  ->  ( ps 
<-> 
[. w  /  y ]. ps ) )
96, 7, 8cbvral 2864 . . . 4  |-  ( A. y  e.  ran  F ps  <->  A. w  e.  ran  F [. w  /  y ]. ps )
109bicomi 194 . . 3  |-  ( A. w  e.  ran  F [. w  /  y ]. ps  <->  A. y  e.  ran  F ps )
11 nfmpt1 4232 . . . . . . 7  |-  F/_ x
( x  e.  A  |->  B )
121, 11nfcxfr 2513 . . . . . 6  |-  F/_ x F
13 nfcv 2516 . . . . . 6  |-  F/_ x
z
1412, 13nffv 5668 . . . . 5  |-  F/_ x
( F `  z
)
15 nfv 1626 . . . . 5  |-  F/ x ps
1614, 15nfsbc 3118 . . . 4  |-  F/ x [. ( F `  z
)  /  y ]. ps
17 nfv 1626 . . . 4  |-  F/ z
[. ( F `  x )  /  y ]. ps
18 fveq2 5661 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
19 dfsbcq 3099 . . . . 5  |-  ( ( F `  z )  =  ( F `  x )  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2018, 19syl 16 . . . 4  |-  ( z  =  x  ->  ( [. ( F `  z
)  /  y ]. ps 
<-> 
[. ( F `  x )  /  y ]. ps ) )
2116, 17, 20cbvral 2864 . . 3  |-  ( A. z  e.  A  [. ( F `  z )  /  y ]. ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps )
225, 10, 213bitr3g 279 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  [. ( F `  x )  /  y ]. ps ) )
231fvmpt2 5744 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( F `  x
)  =  B )
24 dfsbcq 3099 . . . . . 6  |-  ( ( F `  x )  =  B  ->  ( [. ( F `  x
)  /  y ]. ps 
<-> 
[. B  /  y ]. ps ) )
2523, 24syl 16 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  [. B  / 
y ]. ps ) )
26 ralrnmpt.2 . . . . . . 7  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
2726sbcieg 3129 . . . . . 6  |-  ( B  e.  V  ->  ( [. B  /  y ]. ps  <->  ch ) )
2827adantl 453 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. B  / 
y ]. ps  <->  ch )
)
2925, 28bitrd 245 . . . 4  |-  ( ( x  e.  A  /\  B  e.  V )  ->  ( [. ( F `
 x )  / 
y ]. ps  <->  ch )
)
3029ralimiaa 2716 . . 3  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  ( [. ( F `  x )  /  y ]. ps  <->  ch ) )
31 ralbi 2778 . . 3  |-  ( A. x  e.  A  ( [. ( F `  x
)  /  y ]. ps 
<->  ch )  ->  ( A. x  e.  A  [. ( F `  x
)  /  y ]. ps 
<-> 
A. x  e.  A  ch ) )
3230, 31syl 16 . 2  |-  ( A. x  e.  A  B  e.  V  ->  ( A. x  e.  A  [. ( F `  x )  /  y ]. ps  <->  A. x  e.  A  ch ) )
3322, 32bitrd 245 1  |-  ( A. x  e.  A  B  e.  V  ->  ( A. y  e.  ran  F ps  <->  A. x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2642   [.wsbc 3097    e. cmpt 4200   ran crn 4812    Fn wfn 5382   ` cfv 5387
This theorem is referenced by:  rexrnmpt  5811  ac6num  8285  gsumwspan  14711  dfod2  15120  ordtbaslem  17167  ordtrest2lem  17182  cncmp  17370  ptpjopn  17558  ordthmeolem  17747  tsmsfbas  18071  tsmsf1o  18088  prdsxmetlem  18299  prdsbl  18404  metdsf  18742  metdsge  18743  minveclem1  19185  minveclem3b  19189  minveclem6  19195  mbflimsup  19418  xrlimcnp  20667  minvecolem1  22217  minvecolem5  22224  minvecolem6  22225  cvmsss2  24733  comppfsc  26071  prdsbnd  26186  rrnequiv  26228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-fv 5395
  Copyright terms: Public domain W3C validator