MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrp Unicode version

Theorem ralrp 10388
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
Assertion
Ref Expression
ralrp  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )

Proof of Theorem ralrp
StepHypRef Expression
1 elrp 10372 . . . 4  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
21imbi1i 315 . . 3  |-  ( ( x  e.  RR+  ->  ph )  <->  ( ( x  e.  RR  /\  0  <  x )  ->  ph )
)
3 impexp 433 . . 3  |-  ( ( ( x  e.  RR  /\  0  <  x )  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
42, 3bitri 240 . 2  |-  ( ( x  e.  RR+  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
54ralbii2 2584 1  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696   A.wral 2556   class class class wbr 4039   RRcr 8752   0cc0 8753    < clt 8883   RR+crp 10370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-rp 10371
  Copyright terms: Public domain W3C validator