MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralss Structured version   Unicode version

Theorem ralss 3410
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
ralss  |-  ( A 
C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  ->  ph ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem ralss
StepHypRef Expression
1 ssel 3343 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21pm4.71rd 618 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  B  /\  x  e.  A ) ) )
32imbi1d 310 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ph )  <->  ( (
x  e.  B  /\  x  e.  A )  ->  ph ) ) )
4 impexp 435 . . 3  |-  ( ( ( x  e.  B  /\  x  e.  A
)  ->  ph )  <->  ( x  e.  B  ->  ( x  e.  A  ->  ph )
) )
53, 4syl6bb 254 . 2  |-  ( A 
C_  B  ->  (
( x  e.  A  ->  ph )  <->  ( x  e.  B  ->  ( x  e.  A  ->  ph )
) ) )
65ralbidv2 2728 1  |-  ( A 
C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726   A.wral 2706    C_ wss 3321
This theorem is referenced by:  acsfn  13885  acsfn1  13887  acsfn2  13889  acsfn1p  27485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-ral 2711  df-in 3328  df-ss 3335
  Copyright terms: Public domain W3C validator