MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralun Structured version   Unicode version

Theorem ralun 3521
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B
) ph )

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 3520 . 2  |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
21biimpri 198 1  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B
) ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   A.wral 2697    u. cun 3310
This theorem is referenced by:  ac6sfi  7343  frfi  7344  fpwwe2lem13  8509  drsdirfi  14387  lbsextlem4  16225  fbun  17864  filcon  17907  cnmpt2pc  18945  chtub  20988  eupap1  21690  prsiga  24506  kelac1  27119
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-un 3317
  Copyright terms: Public domain W3C validator