MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralunsn Structured version   Unicode version

Theorem ralunsn 4003
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralunsn.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralunsn  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ph  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Distinct variable groups:    x, B    ps, x
Allowed substitution hints:    ph( x)    A( x)    C( x)

Proof of Theorem ralunsn
StepHypRef Expression
1 ralunb 3528 . 2  |-  ( A. x  e.  ( A  u.  { B } )
ph 
<->  ( A. x  e.  A  ph  /\  A. x  e.  { B } ph ) )
2 ralunsn.1 . . . 4  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
32ralsng 3846 . . 3  |-  ( B  e.  C  ->  ( A. x  e.  { B } ph  <->  ps ) )
43anbi2d 685 . 2  |-  ( B  e.  C  ->  (
( A. x  e.  A  ph  /\  A. x  e.  { B } ph )  <->  ( A. x  e.  A  ph  /\  ps ) ) )
51, 4syl5bb 249 1  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ph  <->  ( A. x  e.  A  ph  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705    u. cun 3318   {csn 3814
This theorem is referenced by:  2ralunsn  4004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-v 2958  df-sbc 3162  df-un 3325  df-sn 3820
  Copyright terms: Public domain W3C validator