MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfrd Unicode version

Theorem ralxfrd 4564
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypotheses
Ref Expression
ralxfrd.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
ralxfrd.2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
ralxfrd.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralxfrd  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Distinct variable groups:    x, A    x, y, B    x, C    ch, x    ph, x, y    ps, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)    C( y)

Proof of Theorem ralxfrd
StepHypRef Expression
1 ralxfrd.1 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
2 ralxfrd.3 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
32adantlr 695 . . . 4  |-  ( ( ( ph  /\  y  e.  C )  /\  x  =  A )  ->  ( ps 
<->  ch ) )
41, 3rspcdv 2900 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  ( A. x  e.  B  ps  ->  ch ) )
54ralrimdva 2646 . 2  |-  ( ph  ->  ( A. x  e.  B  ps  ->  A. y  e.  C  ch )
)
6 ralxfrd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
7 r19.29 2696 . . . . 5  |-  ( ( A. y  e.  C  ch  /\  E. y  e.  C  x  =  A )  ->  E. y  e.  C  ( ch  /\  x  =  A ) )
82biimprd 214 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
98expimpd 586 . . . . . . . 8  |-  ( ph  ->  ( ( x  =  A  /\  ch )  ->  ps ) )
109ancomsd 440 . . . . . . 7  |-  ( ph  ->  ( ( ch  /\  x  =  A )  ->  ps ) )
1110ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  C )  ->  (
( ch  /\  x  =  A )  ->  ps ) )
1211rexlimdva 2680 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( E. y  e.  C  ( ch  /\  x  =  A )  ->  ps ) )
137, 12syl5 28 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. y  e.  C  ch  /\  E. y  e.  C  x  =  A )  ->  ps ) )
146, 13mpan2d 655 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( A. y  e.  C  ch  ->  ps ) )
1514ralrimdva 2646 . 2  |-  ( ph  ->  ( A. y  e.  C  ch  ->  A. x  e.  B  ps )
)
165, 15impbid 183 1  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557
This theorem is referenced by:  rexxfrd  4565  ralxfr2d  4566  ralxfr  4568  cmpfi  17151  rlimcnp  20276  islindf4  27411  glbconN  30188  mapdordlem2  32449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803
  Copyright terms: Public domain W3C validator