MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfrd Unicode version

Theorem ralxfrd 4548
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypotheses
Ref Expression
ralxfrd.1  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
ralxfrd.2  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
ralxfrd.3  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralxfrd  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Distinct variable groups:    x, A    x, y, B    x, C    ch, x    ph, x, y    ps, y
Allowed substitution hints:    ps( x)    ch( y)    A( y)    C( y)

Proof of Theorem ralxfrd
StepHypRef Expression
1 ralxfrd.1 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  A  e.  B )
2 ralxfrd.3 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
32adantlr 695 . . . 4  |-  ( ( ( ph  /\  y  e.  C )  /\  x  =  A )  ->  ( ps 
<->  ch ) )
41, 3rspcdv 2887 . . 3  |-  ( (
ph  /\  y  e.  C )  ->  ( A. x  e.  B  ps  ->  ch ) )
54ralrimdva 2633 . 2  |-  ( ph  ->  ( A. x  e.  B  ps  ->  A. y  e.  C  ch )
)
6 ralxfrd.2 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  C  x  =  A )
7 r19.29 2683 . . . . 5  |-  ( ( A. y  e.  C  ch  /\  E. y  e.  C  x  =  A )  ->  E. y  e.  C  ( ch  /\  x  =  A ) )
82biimprd 214 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
98expimpd 586 . . . . . . . 8  |-  ( ph  ->  ( ( x  =  A  /\  ch )  ->  ps ) )
109ancomsd 440 . . . . . . 7  |-  ( ph  ->  ( ( ch  /\  x  =  A )  ->  ps ) )
1110ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  C )  ->  (
( ch  /\  x  =  A )  ->  ps ) )
1211rexlimdva 2667 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  ( E. y  e.  C  ( ch  /\  x  =  A )  ->  ps ) )
137, 12syl5 28 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( A. y  e.  C  ch  /\  E. y  e.  C  x  =  A )  ->  ps ) )
146, 13mpan2d 655 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ( A. y  e.  C  ch  ->  ps ) )
1514ralrimdva 2633 . 2  |-  ( ph  ->  ( A. y  e.  C  ch  ->  A. x  e.  B  ps )
)
165, 15impbid 183 1  |-  ( ph  ->  ( A. x  e.  B  ps  <->  A. y  e.  C  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544
This theorem is referenced by:  rexxfrd  4549  ralxfr2d  4550  ralxfr  4552  cmpfi  17135  rlimcnp  20260  islindf4  27308  glbconN  29566  mapdordlem2  31827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790
  Copyright terms: Public domain W3C validator