MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxpf Unicode version

Theorem ralxpf 4846
Description: Version of ralxp 4843 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
ralxpf.1  |-  F/ y
ph
ralxpf.2  |-  F/ z
ph
ralxpf.3  |-  F/ x ps
ralxpf.4  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
ralxpf  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Distinct variable groups:    x, y, A    x, z, B, y
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)    A( z)

Proof of Theorem ralxpf
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2788 . 2  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. w  e.  ( A  X.  B
) [ w  /  x ] ph )
2 cbvralsv 2788 . . . 4  |-  ( A. z  e.  B  [
u  /  y ] ps  <->  A. v  e.  B  [ v  /  z ] [ u  /  y ] ps )
32ralbii 2580 . . 3  |-  ( A. u  e.  A  A. z  e.  B  [
u  /  y ] ps  <->  A. u  e.  A  A. v  e.  B  [ v  /  z ] [ u  /  y ] ps )
4 nfv 1609 . . . 4  |-  F/ u A. z  e.  B  ps
5 nfcv 2432 . . . . 5  |-  F/_ y B
6 nfs1v 2058 . . . . 5  |-  F/ y [ u  /  y ] ps
75, 6nfral 2609 . . . 4  |-  F/ y A. z  e.  B  [ u  /  y ] ps
8 sbequ12 1872 . . . . 5  |-  ( y  =  u  ->  ( ps 
<->  [ u  /  y ] ps ) )
98ralbidv 2576 . . . 4  |-  ( y  =  u  ->  ( A. z  e.  B  ps 
<-> 
A. z  e.  B  [ u  /  y ] ps ) )
104, 7, 9cbvral 2773 . . 3  |-  ( A. y  e.  A  A. z  e.  B  ps  <->  A. u  e.  A  A. z  e.  B  [
u  /  y ] ps )
11 vex 2804 . . . . . 6  |-  u  e. 
_V
12 vex 2804 . . . . . 6  |-  v  e. 
_V
1311, 12eqvinop 4267 . . . . 5  |-  ( w  =  <. u ,  v
>. 
<->  E. y E. z
( w  =  <. y ,  z >.  /\  <. y ,  z >.  =  <. u ,  v >. )
)
14 ralxpf.1 . . . . . . . 8  |-  F/ y
ph
1514nfsb 2061 . . . . . . 7  |-  F/ y [ w  /  x ] ph
166nfsb 2061 . . . . . . 7  |-  F/ y [ v  /  z ] [ u  /  y ] ps
1715, 16nfbi 1784 . . . . . 6  |-  F/ y ( [ w  /  x ] ph  <->  [ v  /  z ] [
u  /  y ] ps )
18 ralxpf.2 . . . . . . . . 9  |-  F/ z
ph
1918nfsb 2061 . . . . . . . 8  |-  F/ z [ w  /  x ] ph
20 nfs1v 2058 . . . . . . . 8  |-  F/ z [ v  /  z ] [ u  /  y ] ps
2119, 20nfbi 1784 . . . . . . 7  |-  F/ z ( [ w  /  x ] ph  <->  [ v  /  z ] [
u  /  y ] ps )
22 ralxpf.3 . . . . . . . . 9  |-  F/ x ps
23 ralxpf.4 . . . . . . . . 9  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
2422, 23sbhypf 2846 . . . . . . . 8  |-  ( w  =  <. y ,  z
>.  ->  ( [ w  /  x ] ph  <->  ps )
)
25 vex 2804 . . . . . . . . . 10  |-  y  e. 
_V
26 vex 2804 . . . . . . . . . 10  |-  z  e. 
_V
2725, 26opth 4261 . . . . . . . . 9  |-  ( <.
y ,  z >.  =  <. u ,  v
>. 
<->  ( y  =  u  /\  z  =  v ) )
28 sbequ12 1872 . . . . . . . . . 10  |-  ( z  =  v  ->  ( [ u  /  y ] ps  <->  [ v  /  z ] [ u  /  y ] ps ) )
298, 28sylan9bb 680 . . . . . . . . 9  |-  ( ( y  =  u  /\  z  =  v )  ->  ( ps  <->  [ v  /  z ] [
u  /  y ] ps ) )
3027, 29sylbi 187 . . . . . . . 8  |-  ( <.
y ,  z >.  =  <. u ,  v
>.  ->  ( ps  <->  [ v  /  z ] [
u  /  y ] ps ) )
3124, 30sylan9bb 680 . . . . . . 7  |-  ( ( w  =  <. y ,  z >.  /\  <. y ,  z >.  =  <. u ,  v >. )  ->  ( [ w  /  x ] ph  <->  [ v  /  z ] [
u  /  y ] ps ) )
3221, 31exlimi 1813 . . . . . 6  |-  ( E. z ( w  = 
<. y ,  z >.  /\  <. y ,  z
>.  =  <. u ,  v >. )  ->  ( [ w  /  x ] ph  <->  [ v  /  z ] [ u  /  y ] ps ) )
3317, 32exlimi 1813 . . . . 5  |-  ( E. y E. z ( w  =  <. y ,  z >.  /\  <. y ,  z >.  =  <. u ,  v >. )  ->  ( [ w  /  x ] ph  <->  [ v  /  z ] [
u  /  y ] ps ) )
3413, 33sylbi 187 . . . 4  |-  ( w  =  <. u ,  v
>.  ->  ( [ w  /  x ] ph  <->  [ v  /  z ] [
u  /  y ] ps ) )
3534ralxp 4843 . . 3  |-  ( A. w  e.  ( A  X.  B ) [ w  /  x ] ph  <->  A. u  e.  A  A. v  e.  B  [ v  /  z ] [
u  /  y ] ps )
363, 10, 353bitr4ri 269 . 2  |-  ( A. w  e.  ( A  X.  B ) [ w  /  x ] ph  <->  A. y  e.  A  A. z  e.  B  ps )
371, 36bitri 240 1  |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531   F/wnf 1534    = wceq 1632   [wsb 1638   A.wral 2556   <.cop 3656    X. cxp 4703
This theorem is referenced by:  rexxpf  4847
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-iun 3923  df-opab 4094  df-xp 4711  df-rel 4712
  Copyright terms: Public domain W3C validator