Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralxpmap Unicode version

Theorem ralxpmap 26761
Description: Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
ralxpmap.j  |-  ( f  =  ( g  u. 
{ <. J ,  y
>. } )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralxpmap  |-  ( J  e.  T  ->  ( A. f  e.  ( S  ^m  T ) ph  <->  A. y  e.  S  A. g  e.  ( S  ^m  ( T  \  { J } ) ) ps ) )
Distinct variable groups:    ph, g, y    ps, f    f, J, g, y    S, f, g, y    T, f, g, y
Allowed substitution hints:    ph( f)    ps( y, g)

Proof of Theorem ralxpmap
StepHypRef Expression
1 vex 2791 . . 3  |-  g  e. 
_V
2 snex 4216 . . 3  |-  { <. J ,  y >. }  e.  _V
31, 2unex 4518 . 2  |-  ( g  u.  { <. J , 
y >. } )  e. 
_V
4 simpr 447 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f  e.  ( S  ^m  T ) )
5 elmapex 6791 . . . . . . . . 9  |-  ( f  e.  ( S  ^m  T )  ->  ( S  e.  _V  /\  T  e.  _V ) )
65adantl 452 . . . . . . . 8  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( S  e.  _V  /\  T  e.  _V )
)
7 elmapg 6785 . . . . . . . 8  |-  ( ( S  e.  _V  /\  T  e.  _V )  ->  ( f  e.  ( S  ^m  T )  <-> 
f : T --> S ) )
86, 7syl 15 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f  e.  ( S  ^m  T )  <-> 
f : T --> S ) )
94, 8mpbid 201 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f : T --> S )
10 simpl 443 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  J  e.  T )
11 ffvelrn 5663 . . . . . 6  |-  ( ( f : T --> S  /\  J  e.  T )  ->  ( f `  J
)  e.  S )
129, 10, 11syl2anc 642 . . . . 5  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f `  J
)  e.  S )
13 difss 3303 . . . . . . 7  |-  ( T 
\  { J }
)  C_  T
14 fssres 5408 . . . . . . 7  |-  ( ( f : T --> S  /\  ( T  \  { J } )  C_  T
)  ->  ( f  |`  ( T  \  { J } ) ) : ( T  \  { J } ) --> S )
159, 13, 14sylancl 643 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f  |`  ( T  \  { J }
) ) : ( T  \  { J } ) --> S )
165simpld 445 . . . . . . . 8  |-  ( f  e.  ( S  ^m  T )  ->  S  e.  _V )
1716adantl 452 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  S  e.  _V )
186simprd 449 . . . . . . . 8  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  T  e.  _V )
19 difexg 4162 . . . . . . . 8  |-  ( T  e.  _V  ->  ( T  \  { J }
)  e.  _V )
2018, 19syl 15 . . . . . . 7  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( T  \  { J } )  e.  _V )
21 elmapg 6785 . . . . . . 7  |-  ( ( S  e.  _V  /\  ( T  \  { J } )  e.  _V )  ->  ( ( f  |`  ( T  \  { J } ) )  e.  ( S  ^m  ( T  \  { J }
) )  <->  ( f  |`  ( T  \  { J } ) ) : ( T  \  { J } ) --> S ) )
2217, 20, 21syl2anc 642 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( ( f  |`  ( T  \  { J } ) )  e.  ( S  ^m  ( T  \  { J }
) )  <->  ( f  |`  ( T  \  { J } ) ) : ( T  \  { J } ) --> S ) )
2315, 22mpbird 223 . . . . 5  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
( f  |`  ( T  \  { J }
) )  e.  ( S  ^m  ( T 
\  { J }
) ) )
24 ffn 5389 . . . . . . 7  |-  ( f : T --> S  -> 
f  Fn  T )
259, 24syl 15 . . . . . 6  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f  Fn  T )
26 fnsnsplit 5717 . . . . . 6  |-  ( ( f  Fn  T  /\  J  e.  T )  ->  f  =  ( ( f  |`  ( T  \  { J } ) )  u.  { <. J ,  ( f `  J ) >. } ) )
2725, 10, 26syl2anc 642 . . . . 5  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  -> 
f  =  ( ( f  |`  ( T  \  { J } ) )  u.  { <. J ,  ( f `  J ) >. } ) )
28 opeq2 3797 . . . . . . . . 9  |-  ( y  =  ( f `  J )  ->  <. J , 
y >.  =  <. J , 
( f `  J
) >. )
2928sneqd 3653 . . . . . . . 8  |-  ( y  =  ( f `  J )  ->  { <. J ,  y >. }  =  { <. J ,  ( f `  J )
>. } )
3029uneq2d 3329 . . . . . . 7  |-  ( y  =  ( f `  J )  ->  (
g  u.  { <. J ,  y >. } )  =  ( g  u. 
{ <. J ,  ( f `  J )
>. } ) )
3130eqeq2d 2294 . . . . . 6  |-  ( y  =  ( f `  J )  ->  (
f  =  ( g  u.  { <. J , 
y >. } )  <->  f  =  ( g  u.  { <. J ,  ( f `
 J ) >. } ) ) )
32 uneq1 3322 . . . . . . 7  |-  ( g  =  ( f  |`  ( T  \  { J } ) )  -> 
( g  u.  { <. J ,  ( f `
 J ) >. } )  =  ( ( f  |`  ( T  \  { J }
) )  u.  { <. J ,  ( f `
 J ) >. } ) )
3332eqeq2d 2294 . . . . . 6  |-  ( g  =  ( f  |`  ( T  \  { J } ) )  -> 
( f  =  ( g  u.  { <. J ,  ( f `  J ) >. } )  <-> 
f  =  ( ( f  |`  ( T  \  { J } ) )  u.  { <. J ,  ( f `  J ) >. } ) ) )
3431, 33rspc2ev 2892 . . . . 5  |-  ( ( ( f `  J
)  e.  S  /\  ( f  |`  ( T  \  { J }
) )  e.  ( S  ^m  ( T 
\  { J }
) )  /\  f  =  ( ( f  |`  ( T  \  { J } ) )  u. 
{ <. J ,  ( f `  J )
>. } ) )  ->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } ) )
3512, 23, 27, 34syl3anc 1182 . . . 4  |-  ( ( J  e.  T  /\  f  e.  ( S  ^m  T ) )  ->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } ) )
3635ex 423 . . 3  |-  ( J  e.  T  ->  (
f  e.  ( S  ^m  T )  ->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } ) ) )
37 elmapi 6792 . . . . . . . . . 10  |-  ( g  e.  ( S  ^m  ( T  \  { J } ) )  -> 
g : ( T 
\  { J }
) --> S )
3837ad2antll 709 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  g : ( T  \  { J } ) --> S )
39 vex 2791 . . . . . . . . . . 11  |-  y  e. 
_V
40 f1osng 5514 . . . . . . . . . . . 12  |-  ( ( J  e.  T  /\  y  e.  _V )  ->  { <. J ,  y
>. } : { J }
-1-1-onto-> { y } )
41 f1of 5472 . . . . . . . . . . . 12  |-  ( {
<. J ,  y >. } : { J } -1-1-onto-> {
y }  ->  { <. J ,  y >. } : { J } --> { y } )
4240, 41syl 15 . . . . . . . . . . 11  |-  ( ( J  e.  T  /\  y  e.  _V )  ->  { <. J ,  y
>. } : { J }
--> { y } )
4339, 42mpan2 652 . . . . . . . . . 10  |-  ( J  e.  T  ->  { <. J ,  y >. } : { J } --> { y } )
4443adantr 451 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  { <. J ,  y >. } : { J } --> { y } )
45 incom 3361 . . . . . . . . . . 11  |-  ( ( T  \  { J } )  i^i  { J } )  =  ( { J }  i^i  ( T  \  { J } ) )
46 disjdif 3526 . . . . . . . . . . 11  |-  ( { J }  i^i  ( T  \  { J }
) )  =  (/)
4745, 46eqtri 2303 . . . . . . . . . 10  |-  ( ( T  \  { J } )  i^i  { J } )  =  (/)
4847a1i 10 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( T  \  { J } )  i^i  { J } )  =  (/) )
49 fun 5405 . . . . . . . . 9  |-  ( ( ( g : ( T  \  { J } ) --> S  /\  {
<. J ,  y >. } : { J } --> { y } )  /\  ( ( T 
\  { J }
)  i^i  { J } )  =  (/) )  ->  ( g  u. 
{ <. J ,  y
>. } ) : ( ( T  \  { J } )  u.  { J } ) --> ( S  u.  { y } ) )
5038, 44, 48, 49syl21anc 1181 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } ) : ( ( T 
\  { J }
)  u.  { J } ) --> ( S  u.  { y } ) )
51 uncom 3319 . . . . . . . . . 10  |-  ( ( T  \  { J } )  u.  { J } )  =  ( { J }  u.  ( T  \  { J } ) )
52 simpl 443 . . . . . . . . . . . 12  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  J  e.  T )
5352snssd 3760 . . . . . . . . . . 11  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  { J }  C_  T )
54 undif 3534 . . . . . . . . . . 11  |-  ( { J }  C_  T  <->  ( { J }  u.  ( T  \  { J } ) )  =  T )
5553, 54sylib 188 . . . . . . . . . 10  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( { J }  u.  ( T  \  { J }
) )  =  T )
5651, 55syl5eq 2327 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( T  \  { J } )  u.  { J } )  =  T )
5756feq2d 5380 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( g  u.  { <. J ,  y >. } ) : ( ( T  \  { J } )  u.  { J } ) --> ( S  u.  { y } )  <->  ( g  u. 
{ <. J ,  y
>. } ) : T --> ( S  u.  { y } ) ) )
5850, 57mpbid 201 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } ) : T --> ( S  u.  { y } ) )
59 ssid 3197 . . . . . . . . 9  |-  S  C_  S
6059a1i 10 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  S  C_  S )
61 snssi 3759 . . . . . . . . 9  |-  ( y  e.  S  ->  { y }  C_  S )
6261ad2antrl 708 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  { y }  C_  S )
6360, 62unssd 3351 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( S  u.  { y } )  C_  S
)
64 fss 5397 . . . . . . 7  |-  ( ( ( g  u.  { <. J ,  y >. } ) : T --> ( S  u.  { y } )  /\  ( S  u.  { y } )  C_  S
)  ->  ( g  u.  { <. J ,  y
>. } ) : T --> S )
6558, 63, 64syl2anc 642 . . . . . 6  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } ) : T --> S )
66 elmapex 6791 . . . . . . . . 9  |-  ( g  e.  ( S  ^m  ( T  \  { J } ) )  -> 
( S  e.  _V  /\  ( T  \  { J } )  e.  _V ) )
6766ad2antll 709 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( S  e.  _V  /\  ( T  \  { J }
)  e.  _V )
)
6867simpld 445 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  S  e.  _V )
69 ssun1 3338 . . . . . . . 8  |-  T  C_  ( T  u.  { J } )
70 undif1 3529 . . . . . . . . 9  |-  ( ( T  \  { J } )  u.  { J } )  =  ( T  u.  { J } )
7167simprd 449 . . . . . . . . . 10  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( T  \  { J }
)  e.  _V )
72 snex 4216 . . . . . . . . . 10  |-  { J }  e.  _V
73 unexg 4521 . . . . . . . . . 10  |-  ( ( ( T  \  { J } )  e.  _V  /\ 
{ J }  e.  _V )  ->  ( ( T  \  { J } )  u.  { J } )  e.  _V )
7471, 72, 73sylancl 643 . . . . . . . . 9  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( T  \  { J } )  u.  { J } )  e.  _V )
7570, 74syl5eqelr 2368 . . . . . . . 8  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  ( T  u.  { J } )  e.  _V )
76 ssexg 4160 . . . . . . . 8  |-  ( ( T  C_  ( T  u.  { J } )  /\  ( T  u.  { J } )  e. 
_V )  ->  T  e.  _V )
7769, 75, 76sylancr 644 . . . . . . 7  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  T  e.  _V )
78 elmapg 6785 . . . . . . 7  |-  ( ( S  e.  _V  /\  T  e.  _V )  ->  ( ( g  u. 
{ <. J ,  y
>. } )  e.  ( S  ^m  T )  <-> 
( g  u.  { <. J ,  y >. } ) : T --> S ) )
7968, 77, 78syl2anc 642 . . . . . 6  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
( g  u.  { <. J ,  y >. } )  e.  ( S  ^m  T )  <-> 
( g  u.  { <. J ,  y >. } ) : T --> S ) )
8065, 79mpbird 223 . . . . 5  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
g  u.  { <. J ,  y >. } )  e.  ( S  ^m  T ) )
81 eleq1 2343 . . . . 5  |-  ( f  =  ( g  u. 
{ <. J ,  y
>. } )  ->  (
f  e.  ( S  ^m  T )  <->  ( g  u.  { <. J ,  y
>. } )  e.  ( S  ^m  T ) ) )
8280, 81syl5ibrcom 213 . . . 4  |-  ( ( J  e.  T  /\  ( y  e.  S  /\  g  e.  ( S  ^m  ( T  \  { J } ) ) ) )  ->  (
f  =  ( g  u.  { <. J , 
y >. } )  -> 
f  e.  ( S  ^m  T ) ) )
8382rexlimdvva 2674 . . 3  |-  ( J  e.  T  ->  ( E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J } ) ) f  =  ( g  u.  { <. J , 
y >. } )  -> 
f  e.  ( S  ^m  T ) ) )
8436, 83impbid 183 . 2  |-  ( J  e.  T  ->  (
f  e.  ( S  ^m  T )  <->  E. y  e.  S  E. g  e.  ( S  ^m  ( T  \  { J }
) ) f  =  ( g  u.  { <. J ,  y >. } ) ) )
85 ralxpmap.j . . 3  |-  ( f  =  ( g  u. 
{ <. J ,  y
>. } )  ->  ( ph 
<->  ps ) )
8685adantl 452 . 2  |-  ( ( J  e.  T  /\  f  =  ( g  u.  { <. J ,  y
>. } ) )  -> 
( ph  <->  ps ) )
873, 84, 86ralxpxfr2d 26760 1  |-  ( J  e.  T  ->  ( A. f  e.  ( S  ^m  T ) ph  <->  A. y  e.  S  A. g  e.  ( S  ^m  ( T  \  { J } ) ) ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   <.cop 3643    |` cres 4691    Fn wfn 5250   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    ^m cmap 6772
This theorem is referenced by:  islindf4  27308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774
  Copyright terms: Public domain W3C validator