MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ram0 Structured version   Unicode version

Theorem ram0 13390
Description: The Ramsey number when  R  =  (/). (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ram0  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  =  M )

Proof of Theorem ram0
Dummy variables  b 
f  c  s  x  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . . 3  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 id 20 . . 3  |-  ( M  e.  NN0  ->  M  e. 
NN0 )
3 0ex 4339 . . . 4  |-  (/)  e.  _V
43a1i 11 . . 3  |-  ( M  e.  NN0  ->  (/)  e.  _V )
5 f0 5627 . . . 4  |-  (/) : (/) --> NN0
65a1i 11 . . 3  |-  ( M  e.  NN0  ->  (/) : (/) --> NN0 )
7 f00 5628 . . . . 5  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/)  <->  (
f  =  (/)  /\  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =  (/) ) )
8 vex 2959 . . . . . . . . . 10  |-  s  e. 
_V
9 simpl 444 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  M  e.  NN0 )
101hashbcval 13370 . . . . . . . . . 10  |-  ( ( s  e.  _V  /\  M  e.  NN0 )  -> 
( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  { x  e.  ~P s  |  ( # `  x
)  =  M }
)
118, 9, 10sylancr 645 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =  {
x  e.  ~P s  |  ( # `  x
)  =  M }
)
12 hashfz1 11630 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
1312breq1d 4222 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  ->  ( (
# `  ( 1 ... M ) )  <_ 
( # `  s )  <-> 
M  <_  ( # `  s
) ) )
1413biimpar 472 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  ( # `
 ( 1 ... M ) )  <_ 
( # `  s ) )
15 fzfid 11312 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
1 ... M )  e. 
Fin )
16 hashdom 11653 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... M
)  e.  Fin  /\  s  e.  _V )  ->  ( ( # `  (
1 ... M ) )  <_  ( # `  s
)  <->  ( 1 ... M )  ~<_  s ) )
1715, 8, 16sylancl 644 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( # `  ( 1 ... M ) )  <_  ( # `  s
)  <->  ( 1 ... M )  ~<_  s ) )
1814, 17mpbid 202 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
1 ... M )  ~<_  s )
198domen 7121 . . . . . . . . . . . . 13  |-  ( ( 1 ... M )  ~<_  s  <->  E. x ( ( 1 ... M ) 
~~  x  /\  x  C_  s ) )
2018, 19sylib 189 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  E. x
( ( 1 ... M )  ~~  x  /\  x  C_  s ) )
21 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  x  C_  s
)
22 vex 2959 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
2322elpw 3805 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ~P s  <->  x  C_  s
)
2421, 23sylibr 204 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  x  e.  ~P s )
25 hasheni 11632 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... M ) 
~~  x  ->  ( # `
 ( 1 ... M ) )  =  ( # `  x
) )
2625ad2antrl 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( # `  (
1 ... M ) )  =  ( # `  x
) )
2712ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( # `  (
1 ... M ) )  =  M )
2826, 27eqtr3d 2470 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( # `  x
)  =  M )
2924, 28jca 519 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( x  e. 
~P s  /\  ( # `
 x )  =  M ) )
3029ex 424 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( ( 1 ... M )  ~~  x  /\  x  C_  s )  ->  ( x  e. 
~P s  /\  ( # `
 x )  =  M ) ) )
3130eximdv 1632 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  ( E. x ( ( 1 ... M )  ~~  x  /\  x  C_  s
)  ->  E. x
( x  e.  ~P s  /\  ( # `  x
)  =  M ) ) )
3220, 31mpd 15 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  E. x
( x  e.  ~P s  /\  ( # `  x
)  =  M ) )
33 df-rex 2711 . . . . . . . . . . 11  |-  ( E. x  e.  ~P  s
( # `  x )  =  M  <->  E. x
( x  e.  ~P s  /\  ( # `  x
)  =  M ) )
3432, 33sylibr 204 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  E. x  e.  ~P  s ( # `  x )  =  M )
35 rabn0 3647 . . . . . . . . . 10  |-  ( { x  e.  ~P s  |  ( # `  x
)  =  M }  =/=  (/)  <->  E. x  e.  ~P  s ( # `  x
)  =  M )
3634, 35sylibr 204 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  { x  e.  ~P s  |  (
# `  x )  =  M }  =/=  (/) )
3711, 36eqnetrd 2619 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =/=  (/) )
3837neneqd 2617 . . . . . . 7  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  -.  ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
3938pm2.21d 100 . . . . . 6  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/)  ->  E. c  e.  (/)  E. x  e.  ~P  s
( ( (/) `  c
)  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4039adantld 454 . . . . 5  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( f  =  (/)  /\  ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )  ->  E. c  e.  (/)  E. x  e. 
~P  s ( (
(/) `  c )  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
417, 40syl5bi 209 . . . 4  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/)  ->  E. c  e.  (/)  E. x  e.  ~P  s
( ( (/) `  c
)  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4241impr 603 . . 3  |-  ( ( M  e.  NN0  /\  ( M  <_  ( # `  s )  /\  f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/) ) )  ->  E. c  e.  (/)  E. x  e. 
~P  s ( (
(/) `  c )  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
431, 2, 4, 6, 2, 42ramub 13381 . 2  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  <_  M )
44 nnnn0 10228 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  NN0 )
453a1i 11 . . . . . 6  |-  ( M  e.  NN  ->  (/)  e.  _V )
465a1i 11 . . . . . 6  |-  ( M  e.  NN  ->  (/) : (/) --> NN0 )
47 nnm1nn0 10261 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
48 f0 5627 . . . . . . 7  |-  (/) : (/) --> (/)
49 fzfid 11312 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
1 ... ( M  - 
1 ) )  e. 
Fin )
501hashbc2 13374 . . . . . . . . . . 11  |-  ( ( ( 1 ... ( M  -  1 ) )  e.  Fin  /\  M  e.  NN0 )  -> 
( # `  ( ( 1 ... ( M  -  1 ) ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  ( ( # `  ( 1 ... ( M  -  1 ) ) )  _C  M
) )
5149, 44, 50syl2anc 643 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( # `
 ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  ( ( # `  ( 1 ... ( M  -  1 ) ) )  _C  M
) )
52 hashfz1 11630 . . . . . . . . . . . 12  |-  ( ( M  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( M  -  1 ) ) )  =  ( M  -  1 ) )
5347, 52syl 16 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... ( M  -  1 ) ) )  =  ( M  -  1 ) )
5453oveq1d 6096 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( # `  ( 1 ... ( M  - 
1 ) ) )  _C  M )  =  ( ( M  - 
1 )  _C  M
) )
55 nnz 10303 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  e.  ZZ )
56 nnre 10007 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  RR )
5756ltm1d 9943 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( M  -  1 )  <  M )
5857olcd 383 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( M  <  0  \/  ( M  -  1 )  <  M ) )
59 bcval4 11598 . . . . . . . . . . 11  |-  ( ( ( M  -  1 )  e.  NN0  /\  M  e.  ZZ  /\  ( M  <  0  \/  ( M  -  1 )  <  M ) )  ->  ( ( M  -  1 )  _C  M )  =  0 )
6047, 55, 58, 59syl3anc 1184 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( M  -  1 )  _C  M )  =  0 )
6151, 54, 603eqtrd 2472 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( # `
 ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  0 )
62 ovex 6106 . . . . . . . . . 10  |-  ( ( 1 ... ( M  -  1 ) ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  e. 
_V
63 hasheq0 11644 . . . . . . . . . 10  |-  ( ( ( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  e.  _V  ->  ( ( # `  (
( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) )  =  0  <->  ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) ) )
6462, 63ax-mp 8 . . . . . . . . 9  |-  ( (
# `  ( (
1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  0  <->  ( (
1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
6561, 64sylib 189 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =  (/) )
6665feq2d 5581 . . . . . . 7  |-  ( M  e.  NN  ->  ( (/)
: ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/)  <->  (/) : (/) --> (/) ) )
6748, 66mpbiri 225 . . . . . 6  |-  ( M  e.  NN  ->  (/) : ( ( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> (/) )
68 noel 3632 . . . . . . . 8  |-  -.  c  e.  (/)
6968pm2.21i 125 . . . . . . 7  |-  ( c  e.  (/)  ->  ( (
x ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' (/) " { c } )  ->  ( # `
 x )  < 
( (/) `  c ) ) )
7069ad2antrl 709 . . . . . 6  |-  ( ( M  e.  NN  /\  ( c  e.  (/)  /\  x  C_  ( 1 ... ( M  - 
1 ) ) ) )  ->  ( (
x ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' (/) " { c } )  ->  ( # `
 x )  < 
( (/) `  c ) ) )
711, 44, 45, 46, 47, 67, 70ramlb 13387 . . . . 5  |-  ( M  e.  NN  ->  ( M  -  1 )  <  ( M Ramsey  (/) ) )
72 ramubcl 13386 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  (/)  e.  _V  /\  (/) : (/) --> NN0 )  /\  ( M  e.  NN0  /\  ( M Ramsey 
(/) )  <_  M
) )  ->  ( M Ramsey 
(/) )  e.  NN0 )
732, 4, 6, 2, 43, 72syl32anc 1192 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  e.  NN0 )
7444, 73syl 16 . . . . . 6  |-  ( M  e.  NN  ->  ( M Ramsey 
(/) )  e.  NN0 )
75 nn0lem1lt 10337 . . . . . 6  |-  ( ( M  e.  NN0  /\  ( M Ramsey  (/) )  e. 
NN0 )  ->  ( M  <_  ( M Ramsey  (/) )  <->  ( M  -  1 )  < 
( M Ramsey  (/) ) ) )
7644, 74, 75syl2anc 643 . . . . 5  |-  ( M  e.  NN  ->  ( M  <_  ( M Ramsey  (/) )  <->  ( M  -  1 )  < 
( M Ramsey  (/) ) ) )
7771, 76mpbird 224 . . . 4  |-  ( M  e.  NN  ->  M  <_  ( M Ramsey  (/) ) )
7877a1i 11 . . 3  |-  ( M  e.  NN0  ->  ( M  e.  NN  ->  M  <_  ( M Ramsey  (/) ) ) )
7973nn0ge0d 10277 . . . 4  |-  ( M  e.  NN0  ->  0  <_ 
( M Ramsey  (/) ) )
80 breq1 4215 . . . 4  |-  ( M  =  0  ->  ( M  <_  ( M Ramsey  (/) )  <->  0  <_  ( M Ramsey  (/) ) ) )
8179, 80syl5ibrcom 214 . . 3  |-  ( M  e.  NN0  ->  ( M  =  0  ->  M  <_  ( M Ramsey  (/) ) ) )
82 elnn0 10223 . . . 4  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
8382biimpi 187 . . 3  |-  ( M  e.  NN0  ->  ( M  e.  NN  \/  M  =  0 ) )
8478, 81, 83mpjaod 371 . 2  |-  ( M  e.  NN0  ->  M  <_ 
( M Ramsey  (/) ) )
8573nn0red 10275 . . 3  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  e.  RR )
86 nn0re 10230 . . 3  |-  ( M  e.  NN0  ->  M  e.  RR )
8785, 86letri3d 9215 . 2  |-  ( M  e.  NN0  ->  ( ( M Ramsey  (/) )  =  M  <-> 
( ( M Ramsey  (/) )  <_  M  /\  M  <_  ( M Ramsey 
(/) ) ) ) )
8843, 84, 87mpbir2and 889 1  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  =  M )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706   {crab 2709   _Vcvv 2956    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   {csn 3814   class class class wbr 4212   `'ccnv 4877   "cima 4881   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083    ~~ cen 7106    ~<_ cdom 7107   Fincfn 7109   0cc0 8990   1c1 8991    < clt 9120    <_ cle 9121    - cmin 9291   NNcn 10000   NN0cn0 10221   ZZcz 10282   ...cfz 11043    _C cbc 11593   #chash 11618   Ramsey cram 13367
This theorem is referenced by:  0ramcl  13391  ramcl  13397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-seq 11324  df-fac 11567  df-bc 11594  df-hash 11619  df-ram 13369
  Copyright terms: Public domain W3C validator