MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ram0 Unicode version

Theorem ram0 13069
Description: The Ramsey number when  R  =  (/). (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
ram0  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  =  M )

Proof of Theorem ram0
Dummy variables  b 
f  c  s  x  a  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . 3  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 id 19 . . 3  |-  ( M  e.  NN0  ->  M  e. 
NN0 )
3 0ex 4150 . . . 4  |-  (/)  e.  _V
43a1i 10 . . 3  |-  ( M  e.  NN0  ->  (/)  e.  _V )
5 f0 5425 . . . 4  |-  (/) : (/) --> NN0
65a1i 10 . . 3  |-  ( M  e.  NN0  ->  (/) : (/) --> NN0 )
7 f00 5426 . . . . 5  |-  ( f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/)  <->  (
f  =  (/)  /\  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =  (/) ) )
8 vex 2791 . . . . . . . . . 10  |-  s  e. 
_V
9 simpl 443 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  M  e.  NN0 )
101hashbcval 13049 . . . . . . . . . 10  |-  ( ( s  e.  _V  /\  M  e.  NN0 )  -> 
( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  { x  e.  ~P s  |  ( # `  x
)  =  M }
)
118, 9, 10sylancr 644 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =  {
x  e.  ~P s  |  ( # `  x
)  =  M }
)
12 hashfz1 11345 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
1312breq1d 4033 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN0  ->  ( (
# `  ( 1 ... M ) )  <_ 
( # `  s )  <-> 
M  <_  ( # `  s
) ) )
1413biimpar 471 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  ( # `
 ( 1 ... M ) )  <_ 
( # `  s ) )
15 fzfid 11035 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
1 ... M )  e. 
Fin )
16 hashdom 11361 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... M
)  e.  Fin  /\  s  e.  _V )  ->  ( ( # `  (
1 ... M ) )  <_  ( # `  s
)  <->  ( 1 ... M )  ~<_  s ) )
1715, 8, 16sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( # `  ( 1 ... M ) )  <_  ( # `  s
)  <->  ( 1 ... M )  ~<_  s ) )
1814, 17mpbid 201 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
1 ... M )  ~<_  s )
198domen 6875 . . . . . . . . . . . . 13  |-  ( ( 1 ... M )  ~<_  s  <->  E. x ( ( 1 ... M ) 
~~  x  /\  x  C_  s ) )
2018, 19sylib 188 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  E. x
( ( 1 ... M )  ~~  x  /\  x  C_  s ) )
21 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  x  C_  s
)
22 vex 2791 . . . . . . . . . . . . . . . . 17  |-  x  e. 
_V
2322elpw 3631 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ~P s  <->  x  C_  s
)
2421, 23sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  x  e.  ~P s )
25 hasheni 11347 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... M ) 
~~  x  ->  ( # `
 ( 1 ... M ) )  =  ( # `  x
) )
2625ad2antrl 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( # `  (
1 ... M ) )  =  ( # `  x
) )
2712ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( # `  (
1 ... M ) )  =  M )
2826, 27eqtr3d 2317 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( # `  x
)  =  M )
2924, 28jca 518 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  /\  (
( 1 ... M
)  ~~  x  /\  x  C_  s ) )  ->  ( x  e. 
~P s  /\  ( # `
 x )  =  M ) )
3029ex 423 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( ( 1 ... M )  ~~  x  /\  x  C_  s )  ->  ( x  e. 
~P s  /\  ( # `
 x )  =  M ) ) )
3130eximdv 1608 . . . . . . . . . . . 12  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  ( E. x ( ( 1 ... M )  ~~  x  /\  x  C_  s
)  ->  E. x
( x  e.  ~P s  /\  ( # `  x
)  =  M ) ) )
3220, 31mpd 14 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  E. x
( x  e.  ~P s  /\  ( # `  x
)  =  M ) )
33 df-rex 2549 . . . . . . . . . . 11  |-  ( E. x  e.  ~P  s
( # `  x )  =  M  <->  E. x
( x  e.  ~P s  /\  ( # `  x
)  =  M ) )
3432, 33sylibr 203 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  E. x  e.  ~P  s ( # `  x )  =  M )
35 rabn0 3474 . . . . . . . . . 10  |-  ( { x  e.  ~P s  |  ( # `  x
)  =  M }  =/=  (/)  <->  E. x  e.  ~P  s ( # `  x
)  =  M )
3634, 35sylibr 203 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  { x  e.  ~P s  |  (
# `  x )  =  M }  =/=  (/) )
3711, 36eqnetrd 2464 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =/=  (/) )
3837neneqd 2462 . . . . . . 7  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  -.  ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
3938pm2.21d 98 . . . . . 6  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/)  ->  E. c  e.  (/)  E. x  e.  ~P  s
( ( (/) `  c
)  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4039adantld 453 . . . . 5  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
( f  =  (/)  /\  ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )  ->  E. c  e.  (/)  E. x  e. 
~P  s ( (
(/) `  c )  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
417, 40syl5bi 208 . . . 4  |-  ( ( M  e.  NN0  /\  M  <_  ( # `  s
) )  ->  (
f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/)  ->  E. c  e.  (/)  E. x  e.  ~P  s
( ( (/) `  c
)  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4241impr 602 . . 3  |-  ( ( M  e.  NN0  /\  ( M  <_  ( # `  s )  /\  f : ( s ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/) ) )  ->  E. c  e.  (/)  E. x  e. 
~P  s ( (
(/) `  c )  <_  ( # `  x
)  /\  ( x
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
431, 2, 4, 6, 2, 42ramub 13060 . 2  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  <_  M )
44 nnnn0 9972 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  NN0 )
453a1i 10 . . . . . 6  |-  ( M  e.  NN  ->  (/)  e.  _V )
465a1i 10 . . . . . 6  |-  ( M  e.  NN  ->  (/) : (/) --> NN0 )
47 nnm1nn0 10005 . . . . . 6  |-  ( M  e.  NN  ->  ( M  -  1 )  e.  NN0 )
48 f0 5425 . . . . . . 7  |-  (/) : (/) --> (/)
49 fzfid 11035 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  (
1 ... ( M  - 
1 ) )  e. 
Fin )
501hashbc2 13053 . . . . . . . . . . 11  |-  ( ( ( 1 ... ( M  -  1 ) )  e.  Fin  /\  M  e.  NN0 )  -> 
( # `  ( ( 1 ... ( M  -  1 ) ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  ( ( # `  ( 1 ... ( M  -  1 ) ) )  _C  M
) )
5149, 44, 50syl2anc 642 . . . . . . . . . 10  |-  ( M  e.  NN  ->  ( # `
 ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  ( ( # `  ( 1 ... ( M  -  1 ) ) )  _C  M
) )
52 hashfz1 11345 . . . . . . . . . . . 12  |-  ( ( M  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( M  -  1 ) ) )  =  ( M  -  1 ) )
5347, 52syl 15 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( # `
 ( 1 ... ( M  -  1 ) ) )  =  ( M  -  1 ) )
5453oveq1d 5873 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( # `  ( 1 ... ( M  - 
1 ) ) )  _C  M )  =  ( ( M  - 
1 )  _C  M
) )
55 nnz 10045 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  e.  ZZ )
56 nnre 9753 . . . . . . . . . . . . 13  |-  ( M  e.  NN  ->  M  e.  RR )
5756ltm1d 9689 . . . . . . . . . . . 12  |-  ( M  e.  NN  ->  ( M  -  1 )  <  M )
5857olcd 382 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  ( M  <  0  \/  ( M  -  1 )  <  M ) )
59 bcval4 11320 . . . . . . . . . . 11  |-  ( ( ( M  -  1 )  e.  NN0  /\  M  e.  ZZ  /\  ( M  <  0  \/  ( M  -  1 )  <  M ) )  ->  ( ( M  -  1 )  _C  M )  =  0 )
6047, 55, 58, 59syl3anc 1182 . . . . . . . . . 10  |-  ( M  e.  NN  ->  (
( M  -  1 )  _C  M )  =  0 )
6151, 54, 603eqtrd 2319 . . . . . . . . 9  |-  ( M  e.  NN  ->  ( # `
 ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  0 )
62 ovex 5883 . . . . . . . . . 10  |-  ( ( 1 ... ( M  -  1 ) ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  e. 
_V
63 hasheq0 11353 . . . . . . . . . 10  |-  ( ( ( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  e.  _V  ->  ( ( # `  (
( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) )  =  0  <->  ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) ) )
6462, 63ax-mp 8 . . . . . . . . 9  |-  ( (
# `  ( (
1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) )  =  0  <->  ( (
1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  =  (/) )
6561, 64sylib 188 . . . . . . . 8  |-  ( M  e.  NN  ->  (
( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  =  (/) )
6665feq2d 5380 . . . . . . 7  |-  ( M  e.  NN  ->  ( (/)
: ( ( 1 ... ( M  - 
1 ) ) ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> (/)  <->  (/) : (/) --> (/) ) )
6748, 66mpbiri 224 . . . . . 6  |-  ( M  e.  NN  ->  (/) : ( ( 1 ... ( M  -  1 ) ) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> (/) )
68 noel 3459 . . . . . . . 8  |-  -.  c  e.  (/)
6968pm2.21i 123 . . . . . . 7  |-  ( c  e.  (/)  ->  ( (
x ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' (/) " { c } )  ->  ( # `
 x )  < 
( (/) `  c ) ) )
7069ad2antrl 708 . . . . . 6  |-  ( ( M  e.  NN  /\  ( c  e.  (/)  /\  x  C_  ( 1 ... ( M  - 
1 ) ) ) )  ->  ( (
x ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M )  C_  ( `' (/) " { c } )  ->  ( # `
 x )  < 
( (/) `  c ) ) )
711, 44, 45, 46, 47, 67, 70ramlb 13066 . . . . 5  |-  ( M  e.  NN  ->  ( M  -  1 )  <  ( M Ramsey  (/) ) )
72 ramubcl 13065 . . . . . . . 8  |-  ( ( ( M  e.  NN0  /\  (/)  e.  _V  /\  (/) : (/) --> NN0 )  /\  ( M  e.  NN0  /\  ( M Ramsey 
(/) )  <_  M
) )  ->  ( M Ramsey 
(/) )  e.  NN0 )
732, 4, 6, 2, 43, 72syl32anc 1190 . . . . . . 7  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  e.  NN0 )
7444, 73syl 15 . . . . . 6  |-  ( M  e.  NN  ->  ( M Ramsey 
(/) )  e.  NN0 )
75 nn0lem1lt 10079 . . . . . 6  |-  ( ( M  e.  NN0  /\  ( M Ramsey  (/) )  e. 
NN0 )  ->  ( M  <_  ( M Ramsey  (/) )  <->  ( M  -  1 )  < 
( M Ramsey  (/) ) ) )
7644, 74, 75syl2anc 642 . . . . 5  |-  ( M  e.  NN  ->  ( M  <_  ( M Ramsey  (/) )  <->  ( M  -  1 )  < 
( M Ramsey  (/) ) ) )
7771, 76mpbird 223 . . . 4  |-  ( M  e.  NN  ->  M  <_  ( M Ramsey  (/) ) )
7877a1i 10 . . 3  |-  ( M  e.  NN0  ->  ( M  e.  NN  ->  M  <_  ( M Ramsey  (/) ) ) )
7973nn0ge0d 10021 . . . 4  |-  ( M  e.  NN0  ->  0  <_ 
( M Ramsey  (/) ) )
80 breq1 4026 . . . 4  |-  ( M  =  0  ->  ( M  <_  ( M Ramsey  (/) )  <->  0  <_  ( M Ramsey  (/) ) ) )
8179, 80syl5ibrcom 213 . . 3  |-  ( M  e.  NN0  ->  ( M  =  0  ->  M  <_  ( M Ramsey  (/) ) ) )
82 elnn0 9967 . . . 4  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
8382biimpi 186 . . 3  |-  ( M  e.  NN0  ->  ( M  e.  NN  \/  M  =  0 ) )
8478, 81, 83mpjaod 370 . 2  |-  ( M  e.  NN0  ->  M  <_ 
( M Ramsey  (/) ) )
8573nn0red 10019 . . 3  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  e.  RR )
86 nn0re 9974 . . 3  |-  ( M  e.  NN0  ->  M  e.  RR )
8785, 86letri3d 8961 . 2  |-  ( M  e.  NN0  ->  ( ( M Ramsey  (/) )  =  M  <-> 
( ( M Ramsey  (/) )  <_  M  /\  M  <_  ( M Ramsey 
(/) ) ) ) )
8843, 84, 87mpbir2and 888 1  |-  ( M  e.  NN0  ->  ( M Ramsey  (/) )  =  M )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   {crab 2547   _Vcvv 2788    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   class class class wbr 4023   `'ccnv 4688   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860    ~~ cen 6860    ~<_ cdom 6861   Fincfn 6863   0cc0 8737   1c1 8738    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   NN0cn0 9965   ZZcz 10024   ...cfz 10782    _C cbc 11315   #chash 11337   Ramsey cram 13046
This theorem is referenced by:  0ramcl  13070  ramcl  13076
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-seq 11047  df-fac 11289  df-bc 11316  df-hash 11338  df-ram 13048
  Copyright terms: Public domain W3C validator