MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramcl2lem Structured version   Unicode version

Theorem ramcl2lem 13382
Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramcl2lem  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramcl2lem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2447 . 2  |-  (  +oo  =  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) )  -> 
( ( M Ramsey  F
)  =  +oo  <->  ( M Ramsey  F )  =  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) ) ) )
2 eqeq2 2447 . 2  |-  ( sup ( T ,  RR ,  `'  <  )  =  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) )  -> 
( ( M Ramsey  F
)  =  sup ( T ,  RR ,  `'  <  )  <->  ( M Ramsey  F )  =  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) ) ) )
3 ramval.c . . . 4  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
4 ramval.t . . . 4  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
53, 4ramval 13381 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  ) )
6 supeq1 7453 . . . 4  |-  ( T  =  (/)  ->  sup ( T ,  RR* ,  `'  <  )  =  sup ( (/)
,  RR* ,  `'  <  ) )
7 xrinfm0 10920 . . . 4  |-  sup ( (/)
,  RR* ,  `'  <  )  =  +oo
86, 7syl6eq 2486 . . 3  |-  ( T  =  (/)  ->  sup ( T ,  RR* ,  `'  <  )  =  +oo )
95, 8sylan9eq 2490 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =  (/) )  -> 
( M Ramsey  F )  =  +oo )
10 df-ne 2603 . . 3  |-  ( T  =/=  (/)  <->  -.  T  =  (/) )
115adantr 453 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  =  sup ( T ,  RR* ,  `'  <  )
)
12 xrltso 10739 . . . . . . 7  |-  <  Or  RR*
13 cnvso 5414 . . . . . . 7  |-  (  < 
Or  RR*  <->  `'  <  Or  RR* )
1412, 13mpbi 201 . . . . . 6  |-  `'  <  Or 
RR*
1514a1i 11 . . . . 5  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  `'  <  Or  RR* )
16 ssrab2 3430 . . . . . . . . 9  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } 
C_  NN0
174, 16eqsstri 3380 . . . . . . . 8  |-  T  C_  NN0
18 nn0ssre 10230 . . . . . . . 8  |-  NN0  C_  RR
1917, 18sstri 3359 . . . . . . 7  |-  T  C_  RR
20 nn0uz 10525 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
2117, 20sseqtri 3382 . . . . . . . . 9  |-  T  C_  ( ZZ>= `  0 )
2221a1i 11 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  T  C_  ( ZZ>= ` 
0 ) )
23 infmssuzcl 10564 . . . . . . . 8  |-  ( ( T  C_  ( ZZ>= ` 
0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T
)
2422, 23sylan 459 . . . . . . 7  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  T )
2519, 24sseldi 3348 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
2625rexrd 9139 . . . . 5  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR ,  `'  <  )  e. 
RR* )
27 simpr 449 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  z  e.  T )
28 infmssuzle 10563 . . . . . . . 8  |-  ( ( T  C_  ( ZZ>= ` 
0 )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  z
)
2921, 27, 28sylancr 646 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  <_  z
)
3025adantr 453 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  sup ( T ,  RR ,  `'  <  )  e.  RR )
3119a1i 11 . . . . . . . . 9  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  T  C_  RR )
3231sselda 3350 . . . . . . . 8  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  z  e.  RR )
3330, 32lenltd 9224 . . . . . . 7  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  ( sup ( T ,  RR ,  `'  <  )  <_ 
z  <->  -.  z  <  sup ( T ,  RR ,  `'  <  ) ) )
3429, 33mpbid 203 . . . . . 6  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  -.  z  <  sup ( T ,  RR ,  `'  <  ) )
35 ltso 9161 . . . . . . . . 9  |-  <  Or  RR
36 cnvso 5414 . . . . . . . . 9  |-  (  < 
Or  RR  <->  `'  <  Or  RR )
3735, 36mpbi 201 . . . . . . . 8  |-  `'  <  Or  RR
3837supex 7471 . . . . . . 7  |-  sup ( T ,  RR ,  `'  <  )  e.  _V
39 vex 2961 . . . . . . 7  |-  z  e. 
_V
4038, 39brcnv 5058 . . . . . 6  |-  ( sup ( T ,  RR ,  `'  <  ) `'  <  z  <->  z  <  sup ( T ,  RR ,  `'  <  ) )
4134, 40sylnibr 298 . . . . 5  |-  ( ( ( ( M  e. 
NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  /\  z  e.  T )  ->  -.  sup ( T ,  RR ,  `'  <  ) `'  <  z )
4215, 26, 24, 41supmax 7473 . . . 4  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  ->  sup ( T ,  RR* ,  `'  <  )  =  sup ( T ,  RR ,  `'  <  ) )
4311, 42eqtrd 2470 . . 3  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  T  =/=  (/) )  -> 
( M Ramsey  F )  =  sup ( T ,  RR ,  `'  <  ) )
4410, 43sylan2br 464 . 2  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  -.  T  =  (/) )  ->  ( M Ramsey  F
)  =  sup ( T ,  RR ,  `'  <  ) )
451, 2, 9, 44ifbothda 3771 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937   A.wal 1550    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    C_ wss 3322   (/)c0 3630   ifcif 3741   ~Pcpw 3801   {csn 3816   class class class wbr 4215    Or wor 4505   `'ccnv 4880   "cima 4884   -->wf 5453   ` cfv 5457  (class class class)co 6084    e. cmpt2 6086    ^m cmap 7021   supcsup 7448   RRcr 8994   0cc0 8995    +oocpnf 9122   RR*cxr 9124    < clt 9125    <_ cle 9126   NN0cn0 10226   ZZ>=cuz 10493   #chash 11623   Ramsey cram 13372
This theorem is referenced by:  ramtcl  13383  ramtcl2  13384  ramtub  13385  ramcl2  13389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-ram 13374
  Copyright terms: Public domain W3C validator