MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramlb Structured version   Unicode version

Theorem ramlb 13387
Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypotheses
Ref Expression
ramlb.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramlb.m  |-  ( ph  ->  M  e.  NN0 )
ramlb.r  |-  ( ph  ->  R  e.  V )
ramlb.f  |-  ( ph  ->  F : R --> NN0 )
ramlb.s  |-  ( ph  ->  N  e.  NN0 )
ramlb.g  |-  ( ph  ->  G : ( ( 1 ... N ) C M ) --> R )
ramlb.i  |-  ( (
ph  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  ( # `
 x )  < 
( F `  c
) ) )
Assertion
Ref Expression
ramlb  |-  ( ph  ->  N  <  ( M Ramsey  F ) )
Distinct variable groups:    x, c, C    F, c, x    G, c, x    a, b, c, i, x, M    ph, c, x    N, c, x    R, c, x    V, c, x
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    F( i, a, b)    G( i, a, b)    N( i, a, b)    V( i, a, b)

Proof of Theorem ramlb
StepHypRef Expression
1 ramlb.c . . . . 5  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramlb.m . . . . . 6  |-  ( ph  ->  M  e.  NN0 )
32adantr 452 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  M  e.  NN0 )
4 ramlb.r . . . . . 6  |-  ( ph  ->  R  e.  V )
54adantr 452 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  R  e.  V )
6 ramlb.f . . . . . 6  |-  ( ph  ->  F : R --> NN0 )
76adantr 452 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  F : R --> NN0 )
8 ramlb.s . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
98adantr 452 . . . . . 6  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  N  e.  NN0 )
10 simpr 448 . . . . . 6  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( M Ramsey  F )  <_  N )
11 ramubcl 13386 . . . . . 6  |-  ( ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  /\  ( N  e.  NN0  /\  ( M Ramsey  F )  <_  N ) )  ->  ( M Ramsey  F
)  e.  NN0 )
123, 5, 7, 9, 10, 11syl32anc 1192 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( M Ramsey  F )  e.  NN0 )
13 fzfid 11312 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( 1 ... N
)  e.  Fin )
14 hashfz1 11630 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
158, 14syl 16 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
1615breq2d 4224 . . . . . 6  |-  ( ph  ->  ( ( M Ramsey  F
)  <_  ( # `  (
1 ... N ) )  <-> 
( M Ramsey  F )  <_  N ) )
1716biimpar 472 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( M Ramsey  F )  <_  ( # `  (
1 ... N ) ) )
18 ramlb.g . . . . . 6  |-  ( ph  ->  G : ( ( 1 ... N ) C M ) --> R )
1918adantr 452 . . . . 5  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  G : ( ( 1 ... N ) C M ) --> R )
201, 3, 5, 7, 12, 13, 17, 19rami 13383 . . . 4  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  E. c  e.  R  E. x  e.  ~P  ( 1 ... N
) ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' G " { c } ) ) )
21 elpwi 3807 . . . . . . . . 9  |-  ( x  e.  ~P ( 1 ... N )  ->  x  C_  ( 1 ... N ) )
22 ramlb.i . . . . . . . . . . 11  |-  ( (
ph  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  ( # `
 x )  < 
( F `  c
) ) )
2322adantlr 696 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  ( # `
 x )  < 
( F `  c
) ) )
24 fzfid 11312 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( 1 ... N
)  e.  Fin )
25 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  ->  x  C_  ( 1 ... N ) )
26 ssfi 7329 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... N
)  e.  Fin  /\  x  C_  ( 1 ... N ) )  ->  x  e.  Fin )
2724, 25, 26syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  ->  x  e.  Fin )
28 hashcl 11639 . . . . . . . . . . . . 13  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
2927, 28syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( # `  x )  e.  NN0 )
3029nn0red 10275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( # `  x )  e.  RR )
31 simpl 444 . . . . . . . . . . . . 13  |-  ( ( c  e.  R  /\  x  C_  ( 1 ... N ) )  -> 
c  e.  R )
32 ffvelrn 5868 . . . . . . . . . . . . 13  |-  ( ( F : R --> NN0  /\  c  e.  R )  ->  ( F `  c
)  e.  NN0 )
337, 31, 32syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( F `  c
)  e.  NN0 )
3433nn0red 10275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( F `  c
)  e.  RR )
3530, 34ltnled 9220 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( # `  x
)  <  ( F `  c )  <->  -.  ( F `  c )  <_  ( # `  x
) ) )
3623, 35sylibd 206 . . . . . . . . 9  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  C_  ( 1 ... N
) ) )  -> 
( ( x C M )  C_  ( `' G " { c } )  ->  -.  ( F `  c )  <_  ( # `  x
) ) )
3721, 36sylanr2 635 . . . . . . . 8  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  ( ( x C M )  C_  ( `' G " { c } )  ->  -.  ( F `  c )  <_  ( # `  x
) ) )
3837con2d 109 . . . . . . 7  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  ( ( F `
 c )  <_ 
( # `  x )  ->  -.  ( x C M )  C_  ( `' G " { c } ) ) )
39 imnan 412 . . . . . . 7  |-  ( ( ( F `  c
)  <_  ( # `  x
)  ->  -.  (
x C M ) 
C_  ( `' G " { c } ) )  <->  -.  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) ) )
4038, 39sylib 189 . . . . . 6  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  -.  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) ) )
4140pm2.21d 100 . . . . 5  |-  ( ( ( ph  /\  ( M Ramsey  F )  <_  N
)  /\  ( c  e.  R  /\  x  e.  ~P ( 1 ... N ) ) )  ->  ( ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) )  ->  -.  ( M Ramsey  F )  <_  N ) )
4241rexlimdvva 2837 . . . 4  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  ( E. c  e.  R  E. x  e. 
~P  ( 1 ... N ) ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' G " { c } ) )  ->  -.  ( M Ramsey  F )  <_  N ) )
4320, 42mpd 15 . . 3  |-  ( (
ph  /\  ( M Ramsey  F )  <_  N )  ->  -.  ( M Ramsey  F
)  <_  N )
4443pm2.01da 430 . 2  |-  ( ph  ->  -.  ( M Ramsey  F
)  <_  N )
458nn0red 10275 . . . 4  |-  ( ph  ->  N  e.  RR )
4645rexrd 9134 . . 3  |-  ( ph  ->  N  e.  RR* )
47 ramxrcl 13385 . . . 4  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  e.  RR* )
482, 4, 6, 47syl3anc 1184 . . 3  |-  ( ph  ->  ( M Ramsey  F )  e.  RR* )
49 xrltnle 9144 . . 3  |-  ( ( N  e.  RR*  /\  ( M Ramsey  F )  e.  RR* )  ->  ( N  < 
( M Ramsey  F )  <->  -.  ( M Ramsey  F )  <_  N ) )
5046, 48, 49syl2anc 643 . 2  |-  ( ph  ->  ( N  <  ( M Ramsey  F )  <->  -.  ( M Ramsey  F )  <_  N
) )
5144, 50mpbird 224 1  |-  ( ph  ->  N  <  ( M Ramsey  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2706   {crab 2709   _Vcvv 2956    C_ wss 3320   ~Pcpw 3799   {csn 3814   class class class wbr 4212   `'ccnv 4877   "cima 4881   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   Fincfn 7109   1c1 8991   RR*cxr 9119    < clt 9120    <_ cle 9121   NN0cn0 10221   ...cfz 11043   #chash 11618   Ramsey cram 13367
This theorem is referenced by:  0ram  13388  ram0  13390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-hash 11619  df-ram 13369
  Copyright terms: Public domain W3C validator