MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtcl2 Structured version   Unicode version

Theorem ramtcl2 13371
Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015.)
Hypotheses
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
ramval.t  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
Assertion
Ref Expression
ramtcl2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  T  =/=  (/) ) )
Distinct variable groups:    f, c, x, C    n, c, s, F, f, x    a,
b, c, f, i, n, s, x, M    R, c, f, n, s, x    V, c, f, n, s, x
Allowed substitution hints:    C( i, n, s, a, b)    R( i, a, b)    T( x, f, i, n, s, a, b, c)    F( i, a, b)    V( i, a, b)

Proof of Theorem ramtcl2
StepHypRef Expression
1 ramval.c . . . . 5  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramval.t . . . . 5  |-  T  =  { n  e.  NN0  | 
A. s ( n  <_  ( # `  s
)  ->  A. f  e.  ( R  ^m  (
s C M ) ) E. c  e.  R  E. x  e. 
~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) ) }
31, 2ramcl2lem 13369 . . . 4  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( M Ramsey  F )  =  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) ) )
43eleq1d 2501 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) )  e.  NN0 )
)
5 pnfnre 9119 . . . . . 6  |-  +oo  e/  RR
6 df-nel 2601 . . . . . 6  |-  (  +oo  e/  RR  <->  -.  +oo  e.  RR )
75, 6mpbi 200 . . . . 5  |-  -.  +oo  e.  RR
8 iftrue 3737 . . . . . . 7  |-  ( T  =  (/)  ->  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) )  =  +oo )
98eleq1d 2501 . . . . . 6  |-  ( T  =  (/)  ->  ( if ( T  =  (/) , 
+oo ,  sup ( T ,  RR ,  `'  <  ) )  e. 
NN0 
<-> 
+oo  e.  NN0 ) )
10 nn0re 10222 . . . . . 6  |-  (  +oo  e.  NN0  ->  +oo  e.  RR )
119, 10syl6bi 220 . . . . 5  |-  ( T  =  (/)  ->  ( if ( T  =  (/) , 
+oo ,  sup ( T ,  RR ,  `'  <  ) )  e. 
NN0  ->  +oo  e.  RR ) )
127, 11mtoi 171 . . . 4  |-  ( T  =  (/)  ->  -.  if ( T  =  (/) ,  +oo ,  sup ( T ,  RR ,  `'  <  ) )  e.  NN0 )
1312necon2ai 2643 . . 3  |-  ( if ( T  =  (/) , 
+oo ,  sup ( T ,  RR ,  `'  <  ) )  e. 
NN0  ->  T  =/=  (/) )
144, 13syl6bi 220 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  ->  T  =/=  (/) ) )
151, 2ramtcl 13370 . . 3  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  T  <->  T  =/=  (/) ) )
16 ssrab2 3420 . . . . 5  |-  { n  e.  NN0  |  A. s
( n  <_  ( # `
 s )  ->  A. f  e.  ( R  ^m  ( s C M ) ) E. c  e.  R  E. x  e.  ~P  s
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) ) ) } 
C_  NN0
172, 16eqsstri 3370 . . . 4  |-  T  C_  NN0
1817sseli 3336 . . 3  |-  ( ( M Ramsey  F )  e.  T  ->  ( M Ramsey  F )  e.  NN0 )
1915, 18syl6bir 221 . 2  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( T  =/=  (/)  ->  ( M Ramsey  F )  e.  NN0 ) )
2014, 19impbid 184 1  |-  ( ( M  e.  NN0  /\  R  e.  V  /\  F : R --> NN0 )  ->  ( ( M Ramsey  F
)  e.  NN0  <->  T  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549    = wceq 1652    e. wcel 1725    =/= wne 2598    e/ wnel 2599   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ifcif 3731   ~Pcpw 3791   {csn 3806   class class class wbr 4204   `'ccnv 4869   "cima 4873   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075    ^m cmap 7010   supcsup 7437   RRcr 8981    +oocpnf 9109    < clt 9112    <_ cle 9113   NN0cn0 10213   #chash 11610   Ramsey cram 13359
This theorem is referenced by:  rami  13375  ramcl2  13376  ramsey  13390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-ram 13361
  Copyright terms: Public domain W3C validator