MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub1 Unicode version

Theorem ramub1 13325
Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ramub1.m  |-  ( ph  ->  M  e.  NN )
ramub1.r  |-  ( ph  ->  R  e.  Fin )
ramub1.f  |-  ( ph  ->  F : R --> NN )
ramub1.g  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
ramub1.1  |-  ( ph  ->  G : R --> NN0 )
ramub1.2  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
Assertion
Ref Expression
ramub1  |-  ( ph  ->  ( M Ramsey  F )  <_  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
Distinct variable groups:    x, y, F    x, M, y    x, G, y    x, R, y    ph, x, y

Proof of Theorem ramub1
Dummy variables  u  c  f  s  v  w  z  a  b 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2389 . 2  |-  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 ramub1.m . . 3  |-  ( ph  ->  M  e.  NN )
32nnnn0d 10208 . 2  |-  ( ph  ->  M  e.  NN0 )
4 ramub1.r . 2  |-  ( ph  ->  R  e.  Fin )
5 ramub1.f . . 3  |-  ( ph  ->  F : R --> NN )
6 nnssnn0 10158 . . 3  |-  NN  C_  NN0
7 fss 5541 . . 3  |-  ( ( F : R --> NN  /\  NN  C_  NN0 )  ->  F : R --> NN0 )
85, 6, 7sylancl 644 . 2  |-  ( ph  ->  F : R --> NN0 )
9 ramub1.2 . . 3  |-  ( ph  ->  ( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
10 peano2nn0 10194 . . 3  |-  ( ( ( M  -  1 ) Ramsey  G )  e. 
NN0  ->  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  e.  NN0 )
119, 10syl 16 . 2  |-  ( ph  ->  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  e.  NN0 )
12 simprl 733 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( # `  s
)  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
139adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( ( M  -  1 ) Ramsey  G )  e.  NN0 )
14 nn0p1nn 10193 . . . . . . 7  |-  ( ( ( M  -  1 ) Ramsey  G )  e. 
NN0  ->  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  e.  NN )
1513, 14syl 16 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( (
( M  -  1 ) Ramsey  G )  +  1 )  e.  NN )
1612, 15eqeltrd 2463 . . . . 5  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( # `  s
)  e.  NN )
1716nnnn0d 10208 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( # `  s
)  e.  NN0 )
18 vex 2904 . . . . . . . 8  |-  s  e. 
_V
19 hashclb 11570 . . . . . . . 8  |-  ( s  e.  _V  ->  (
s  e.  Fin  <->  ( # `  s
)  e.  NN0 )
)
2018, 19ax-mp 8 . . . . . . 7  |-  ( s  e.  Fin  <->  ( # `  s
)  e.  NN0 )
2117, 20sylibr 204 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  s  e.  Fin )
22 hashnncl 11574 . . . . . 6  |-  ( s  e.  Fin  ->  (
( # `  s )  e.  NN  <->  s  =/=  (/) ) )
2321, 22syl 16 . . . . 5  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( ( # `
 s )  e.  NN  <->  s  =/=  (/) ) )
2416, 23mpbid 202 . . . 4  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  s  =/=  (/) )
25 n0 3582 . . . 4  |-  ( s  =/=  (/)  <->  E. w  w  e.  s )
2624, 25sylib 189 . . 3  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  E. w  w  e.  s )
272adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  M  e.  NN )
284adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  R  e.  Fin )
295adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  F : R --> NN )
30 ramub1.g . . . . . 6  |-  G  =  ( x  e.  R  |->  ( M Ramsey  ( y  e.  R  |->  if ( y  =  x ,  ( ( F `  x )  -  1 ) ,  ( F `
 y ) ) ) ) )
31 ramub1.1 . . . . . . 7  |-  ( ph  ->  G : R --> NN0 )
3231adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  G : R --> NN0 )
339adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
( ( M  - 
1 ) Ramsey  G )  e.  NN0 )
3421adantrr 698 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
s  e.  Fin )
35 simprll 739 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
36 simprlr 740 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  -> 
f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )
37 simprr 734 . . . . . 6  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  w  e.  s )
38 uneq1 3439 . . . . . . . 8  |-  ( v  =  u  ->  (
v  u.  { w } )  =  ( u  u.  { w } ) )
3938fveq2d 5674 . . . . . . 7  |-  ( v  =  u  ->  (
f `  ( v  u.  { w } ) )  =  ( f `
 ( u  u. 
{ w } ) ) )
4039cbvmptv 4243 . . . . . 6  |-  ( v  e.  ( ( s 
\  { w }
) ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) ( M  -  1 ) )  |->  ( f `
 ( v  u. 
{ w } ) ) )  =  ( u  e.  ( ( s  \  { w } ) ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) ( M  - 
1 ) )  |->  ( f `  ( u  u.  { w }
) ) )
4127, 28, 29, 30, 32, 33, 1, 34, 35, 36, 37, 40ramub1lem2 13324 . . . . 5  |-  ( (
ph  /\  ( (
( # `  s )  =  ( ( ( M  -  1 ) Ramsey  G )  +  1 )  /\  f : ( s ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M ) --> R )  /\  w  e.  s ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
4241expr 599 . . . 4  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( w  e.  s  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `  c )  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4342exlimdv 1643 . . 3  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  ( E. w  w  e.  s  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `
 c )  <_ 
( # `  z )  /\  ( z ( a  e.  _V , 
i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) ) )
4426, 43mpd 15 . 2  |-  ( (
ph  /\  ( ( # `
 s )  =  ( ( ( M  -  1 ) Ramsey  G
)  +  1 )  /\  f : ( s ( a  e. 
_V ,  i  e. 
NN0  |->  { b  e. 
~P a  |  (
# `  b )  =  i } ) M ) --> R ) )  ->  E. c  e.  R  E. z  e.  ~P  s ( ( F `  c )  <_  ( # `  z
)  /\  ( z
( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } ) M )  C_  ( `' f " {
c } ) ) )
451, 3, 4, 8, 11, 44ramub2 13311 1  |-  ( ph  ->  ( M Ramsey  F )  <_  ( ( ( M  -  1 ) Ramsey  G )  +  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2552   E.wrex 2652   {crab 2655   _Vcvv 2901    \ cdif 3262    u. cun 3263    C_ wss 3265   (/)c0 3573   ifcif 3684   ~Pcpw 3744   {csn 3759   class class class wbr 4155    e. cmpt 4209   `'ccnv 4819   "cima 4823   -->wf 5392   ` cfv 5396  (class class class)co 6022    e. cmpt2 6024   Fincfn 7047   1c1 8926    + caddc 8928    <_ cle 9056    - cmin 9225   NNcn 9934   NN0cn0 10155   #chash 11547   Ramsey cram 13296
This theorem is referenced by:  ramcl  13326
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-sup 7383  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-hash 11548  df-ram 13298
  Copyright terms: Public domain W3C validator