MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramub2 Unicode version

Theorem ramub2 13345
Description: It is sufficient to check the Ramsey property on finite sets of size equal to the upper bound. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
rami.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
rami.m  |-  ( ph  ->  M  e.  NN0 )
rami.r  |-  ( ph  ->  R  e.  V )
rami.f  |-  ( ph  ->  F : R --> NN0 )
ramub2.n  |-  ( ph  ->  N  e.  NN0 )
ramub2.i  |-  ( (
ph  /\  ( ( # `
 s )  =  N  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )
Assertion
Ref Expression
ramub2  |-  ( ph  ->  ( M Ramsey  F )  <_  N )
Distinct variable groups:    f, c,
s, x, C    ph, c,
f, s, x    F, c, f, s, x    a,
b, c, f, i, s, x, M    R, c, f, s, x    N, a, c, f, i, s, x    V, c, f, s, x
Allowed substitution hints:    ph( i, a, b)    C( i, a, b)    R( i, a, b)    F( i, a, b)    N( b)    V( i, a, b)

Proof of Theorem ramub2
Dummy variables  g 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rami.c . 2  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
2 rami.m . 2  |-  ( ph  ->  M  e.  NN0 )
3 rami.r . 2  |-  ( ph  ->  R  e.  V )
4 rami.f . 2  |-  ( ph  ->  F : R --> NN0 )
5 ramub2.n . 2  |-  ( ph  ->  N  e.  NN0 )
65adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  N  e.  NN0 )
7 hashfz1 11593 . . . . . . 7  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
86, 7syl 16 . . . . . 6  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( # `  (
1 ... N ) )  =  N )
9 simprl 733 . . . . . 6  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  N  <_  ( # `
 t ) )
108, 9eqbrtrd 4200 . . . . 5  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( # `  (
1 ... N ) )  <_  ( # `  t
) )
11 fzfid 11275 . . . . . 6  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( 1 ... N )  e.  Fin )
12 vex 2927 . . . . . 6  |-  t  e. 
_V
13 hashdom 11616 . . . . . 6  |-  ( ( ( 1 ... N
)  e.  Fin  /\  t  e.  _V )  ->  ( ( # `  (
1 ... N ) )  <_  ( # `  t
)  <->  ( 1 ... N )  ~<_  t ) )
1411, 12, 13sylancl 644 . . . . 5  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( ( # `  ( 1 ... N
) )  <_  ( # `
 t )  <->  ( 1 ... N )  ~<_  t ) )
1510, 14mpbid 202 . . . 4  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  ( 1 ... N )  ~<_  t )
1612domen 7088 . . . 4  |-  ( ( 1 ... N )  ~<_  t  <->  E. s ( ( 1 ... N ) 
~~  s  /\  s  C_  t ) )
1715, 16sylib 189 . . 3  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  E. s ( ( 1 ... N ) 
~~  s  /\  s  C_  t ) )
18 simpll 731 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ph )
19 ensym 7123 . . . . . . . 8  |-  ( ( 1 ... N ) 
~~  s  ->  s  ~~  ( 1 ... N
) )
2019ad2antrl 709 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  s  ~~  ( 1 ... N
) )
21 hasheni 11595 . . . . . . 7  |-  ( s 
~~  ( 1 ... N )  ->  ( # `
 s )  =  ( # `  (
1 ... N ) ) )
2220, 21syl 16 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( # `
 s )  =  ( # `  (
1 ... N ) ) )
235ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  N  e.  NN0 )
2423, 7syl 16 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( # `
 ( 1 ... N ) )  =  N )
2522, 24eqtrd 2444 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( # `
 s )  =  N )
26 simplrr 738 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  g : ( t C M ) --> R )
2712a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  t  e.  _V )
28 simprr 734 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  s  C_  t )
292ad2antrr 707 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  M  e.  NN0 )
301hashbcss 13335 . . . . . . 7  |-  ( ( t  e.  _V  /\  s  C_  t  /\  M  e.  NN0 )  ->  (
s C M ) 
C_  ( t C M ) )
3127, 28, 29, 30syl3anc 1184 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
s C M ) 
C_  ( t C M ) )
32 fssres 5577 . . . . . 6  |-  ( ( g : ( t C M ) --> R  /\  ( s C M )  C_  (
t C M ) )  ->  ( g  |`  ( s C M ) ) : ( s C M ) --> R )
3326, 31, 32syl2anc 643 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
g  |`  ( s C M ) ) : ( s C M ) --> R )
34 vex 2927 . . . . . . 7  |-  g  e. 
_V
3534resex 5153 . . . . . 6  |-  ( g  |`  ( s C M ) )  e.  _V
36 feq1 5543 . . . . . . . . 9  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
f : ( s C M ) --> R  <-> 
( g  |`  (
s C M ) ) : ( s C M ) --> R ) )
3736anbi2d 685 . . . . . . . 8  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ( # `  s
)  =  N  /\  f : ( s C M ) --> R )  <-> 
( ( # `  s
)  =  N  /\  ( g  |`  (
s C M ) ) : ( s C M ) --> R ) ) )
3837anbi2d 685 . . . . . . 7  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ph  /\  (
( # `  s )  =  N  /\  f : ( s C M ) --> R ) )  <->  ( ph  /\  ( ( # `  s
)  =  N  /\  ( g  |`  (
s C M ) ) : ( s C M ) --> R ) ) ) )
39 cnveq 5013 . . . . . . . . . . . 12  |-  ( f  =  ( g  |`  ( s C M ) )  ->  `' f  =  `' (
g  |`  ( s C M ) ) )
4039imaeq1d 5169 . . . . . . . . . . 11  |-  ( f  =  ( g  |`  ( s C M ) )  ->  ( `' f " {
c } )  =  ( `' ( g  |`  ( s C M ) ) " {
c } ) )
41 cnvresima 5326 . . . . . . . . . . 11  |-  ( `' ( g  |`  (
s C M ) ) " { c } )  =  ( ( `' g " { c } )  i^i  ( s C M ) )
4240, 41syl6eq 2460 . . . . . . . . . 10  |-  ( f  =  ( g  |`  ( s C M ) )  ->  ( `' f " {
c } )  =  ( ( `' g
" { c } )  i^i  ( s C M ) ) )
4342sseq2d 3344 . . . . . . . . 9  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( x C M )  C_  ( `' f " { c } )  <->  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )
4443anbi2d 685 . . . . . . . 8  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' f " { c } ) )  <->  ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) ) )
45442rexbidv 2717 . . . . . . 7  |-  ( f  =  ( g  |`  ( s C M ) )  ->  ( E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) )  <->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) ) )
4638, 45imbi12d 312 . . . . . 6  |-  ( f  =  ( g  |`  ( s C M ) )  ->  (
( ( ph  /\  ( ( # `  s
)  =  N  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' f " {
c } ) ) )  <->  ( ( ph  /\  ( ( # `  s
)  =  N  /\  ( g  |`  (
s C M ) ) : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) ) ) )
47 ramub2.i . . . . . 6  |-  ( (
ph  /\  ( ( # `
 s )  =  N  /\  f : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' f " {
c } ) ) )
4835, 46, 47vtocl 2974 . . . . 5  |-  ( (
ph  /\  ( ( # `
 s )  =  N  /\  ( g  |`  ( s C M ) ) : ( s C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )
4918, 25, 33, 48syl12anc 1182 . . . 4  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  E. c  e.  R  E. x  e.  ~P  s ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )
50 sstr 3324 . . . . . . . . . 10  |-  ( ( x  C_  s  /\  s  C_  t )  ->  x  C_  t )
5150expcom 425 . . . . . . . . 9  |-  ( s 
C_  t  ->  (
x  C_  s  ->  x 
C_  t ) )
5251ad2antll 710 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
x  C_  s  ->  x 
C_  t ) )
53 vex 2927 . . . . . . . . 9  |-  x  e. 
_V
5453elpw 3773 . . . . . . . 8  |-  ( x  e.  ~P s  <->  x  C_  s
)
5553elpw 3773 . . . . . . . 8  |-  ( x  e.  ~P t  <->  x  C_  t
)
5652, 54, 553imtr4g 262 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
x  e.  ~P s  ->  x  e.  ~P t
) )
57 id 20 . . . . . . . . . 10  |-  ( ( x C M ) 
C_  ( ( `' g " { c } )  i^i  (
s C M ) )  ->  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) )
58 inss1 3529 . . . . . . . . . 10  |-  ( ( `' g " {
c } )  i^i  ( s C M ) )  C_  ( `' g " {
c } )
5957, 58syl6ss 3328 . . . . . . . . 9  |-  ( ( x C M ) 
C_  ( ( `' g " { c } )  i^i  (
s C M ) )  ->  ( x C M )  C_  ( `' g " {
c } ) )
6059a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
( x C M )  C_  ( ( `' g " {
c } )  i^i  ( s C M ) )  ->  (
x C M ) 
C_  ( `' g
" { c } ) ) )
6160anim2d 549 . . . . . . 7  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( ( `' g " {
c } )  i^i  ( s C M ) ) )  -> 
( ( F `  c )  <_  ( # `
 x )  /\  ( x C M )  C_  ( `' g " { c } ) ) ) )
6256, 61anim12d 547 . . . . . 6  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  (
( x  e.  ~P s  /\  ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) ) )  ->  ( x  e.  ~P t  /\  (
( F `  c
)  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' g " {
c } ) ) ) ) )
6362reximdv2 2783 . . . . 5  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) )  ->  E. x  e.  ~P  t ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' g " {
c } ) ) ) )
6463reximdv 2785 . . . 4  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  ( E. c  e.  R  E. x  e.  ~P  s ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  (
( `' g " { c } )  i^i  ( s C M ) ) )  ->  E. c  e.  R  E. x  e.  ~P  t ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' g " {
c } ) ) ) )
6549, 64mpd 15 . . 3  |-  ( ( ( ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  /\  ( ( 1 ... N )  ~~  s  /\  s  C_  t
) )  ->  E. c  e.  R  E. x  e.  ~P  t ( ( F `  c )  <_  ( # `  x
)  /\  ( x C M )  C_  ( `' g " {
c } ) ) )
6617, 65exlimddv 1645 . 2  |-  ( (
ph  /\  ( N  <_  ( # `  t
)  /\  g :
( t C M ) --> R ) )  ->  E. c  e.  R  E. x  e.  ~P  t ( ( F `
 c )  <_ 
( # `  x )  /\  ( x C M )  C_  ( `' g " {
c } ) ) )
671, 2, 3, 4, 5, 66ramub 13344 1  |-  ( ph  ->  ( M Ramsey  F )  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   E.wrex 2675   {crab 2678   _Vcvv 2924    i^i cin 3287    C_ wss 3288   ~Pcpw 3767   {csn 3782   class class class wbr 4180   `'ccnv 4844    |` cres 4847   "cima 4848   -->wf 5417   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050    ~~ cen 7073    ~<_ cdom 7074   Fincfn 7076   1c1 8955    <_ cle 9085   NN0cn0 10185   ...cfz 11007   #chash 11581   Ramsey cram 13330
This theorem is referenced by:  ramub1  13359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-sup 7412  df-card 7790  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-n0 10186  df-z 10247  df-uz 10453  df-fz 11008  df-hash 11582  df-ram 13332
  Copyright terms: Public domain W3C validator