Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rankaltopb Unicode version

Theorem rankaltopb 24513
Description: Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rankaltopb  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  << A ,  B >> )  =  suc  suc  ( ( rank `  A
)  u.  suc  ( rank `  B ) ) )

Proof of Theorem rankaltopb
StepHypRef Expression
1 snwf 7481 . . 3  |-  ( B  e.  U. ( R1
" On )  ->  { B }  e.  U. ( R1 " On ) )
2 df-altop 24492 . . . . . 6  |-  << A ,  B >>  =  { { A } ,  { A ,  { B } } }
32fveq2i 5528 . . . . 5  |-  ( rank `  << A ,  B >> )  =  ( rank `  { { A } ,  { A ,  { B } } } )
4 snwf 7481 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  ->  { A }  e.  U. ( R1 " On ) )
54adantr 451 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  { A }  e.  U. ( R1 " On ) )
6 prwf 7483 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  { A ,  { B } }  e.  U. ( R1 " On ) )
7 rankprb 7523 . . . . . 6  |-  ( ( { A }  e.  U. ( R1 " On )  /\  { A ,  { B } }  e.  U. ( R1 " On ) )  ->  ( rank `  { { A } ,  { A ,  { B } } } )  =  suc  ( ( rank `  { A } )  u.  ( rank `  { A ,  { B } } ) ) )
85, 6, 7syl2anc 642 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  ( rank `  { { A } ,  { A ,  { B } } } )  =  suc  ( (
rank `  { A } )  u.  ( rank `  { A ,  { B } } ) ) )
93, 8syl5eq 2327 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  ( rank ` 
<< A ,  B >> )  =  suc  ( (
rank `  { A } )  u.  ( rank `  { A ,  { B } } ) ) )
10 snsspr1 3764 . . . . . . . 8  |-  { A }  C_  { A ,  { B } }
11 ssequn1 3345 . . . . . . . 8  |-  ( { A }  C_  { A ,  { B } }  <->  ( { A }  u.  { A ,  { B } } )  =  { A ,  { B } } )
1210, 11mpbi 199 . . . . . . 7  |-  ( { A }  u.  { A ,  { B } } )  =  { A ,  { B } }
1312fveq2i 5528 . . . . . 6  |-  ( rank `  ( { A }  u.  { A ,  { B } } ) )  =  ( rank `  { A ,  { B } } )
14 rankunb 7522 . . . . . . 7  |-  ( ( { A }  e.  U. ( R1 " On )  /\  { A ,  { B } }  e.  U. ( R1 " On ) )  ->  ( rank `  ( { A }  u.  { A ,  { B } }
) )  =  ( ( rank `  { A } )  u.  ( rank `  { A ,  { B } } ) ) )
155, 6, 14syl2anc 642 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  ( rank `  ( { A }  u.  { A ,  { B } } ) )  =  ( ( rank `  { A } )  u.  ( rank `  { A ,  { B } } ) ) )
16 rankprb 7523 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  ( rank `  { A ,  { B } } )  =  suc  ( ( rank `  A )  u.  ( rank `  { B }
) ) )
1713, 15, 163eqtr3a 2339 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  ( ( rank `  { A }
)  u.  ( rank `  { A ,  { B } } ) )  =  suc  ( (
rank `  A )  u.  ( rank `  { B } ) ) )
18 suceq 4457 . . . . 5  |-  ( ( ( rank `  { A } )  u.  ( rank `  { A ,  { B } } ) )  =  suc  (
( rank `  A )  u.  ( rank `  { B } ) )  ->  suc  ( ( rank `  { A } )  u.  ( rank `  { A ,  { B } } ) )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  { B } ) ) )
1917, 18syl 15 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  suc  ( (
rank `  { A } )  u.  ( rank `  { A ,  { B } } ) )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  { B } ) ) )
209, 19eqtrd 2315 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  { B }  e.  U. ( R1 " On ) )  ->  ( rank ` 
<< A ,  B >> )  =  suc  suc  (
( rank `  A )  u.  ( rank `  { B } ) ) )
211, 20sylan2 460 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  << A ,  B >> )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  { B } ) ) )
22 ranksnb 7499 . . . . 5  |-  ( B  e.  U. ( R1
" On )  -> 
( rank `  { B } )  =  suc  ( rank `  B )
)
2322uneq2d 3329 . . . 4  |-  ( B  e.  U. ( R1
" On )  -> 
( ( rank `  A
)  u.  ( rank `  { B } ) )  =  ( (
rank `  A )  u.  suc  ( rank `  B
) ) )
24 suceq 4457 . . . 4  |-  ( ( ( rank `  A
)  u.  ( rank `  { B } ) )  =  ( (
rank `  A )  u.  suc  ( rank `  B
) )  ->  suc  ( ( rank `  A
)  u.  ( rank `  { B } ) )  =  suc  (
( rank `  A )  u.  suc  ( rank `  B
) ) )
25 suceq 4457 . . . 4  |-  ( suc  ( ( rank `  A
)  u.  ( rank `  { B } ) )  =  suc  (
( rank `  A )  u.  suc  ( rank `  B
) )  ->  suc  suc  ( ( rank `  A
)  u.  ( rank `  { B } ) )  =  suc  suc  ( ( rank `  A
)  u.  suc  ( rank `  B ) ) )
2623, 24, 253syl 18 . . 3  |-  ( B  e.  U. ( R1
" On )  ->  suc  suc  ( ( rank `  A )  u.  ( rank `  { B }
) )  =  suc  suc  ( ( rank `  A
)  u.  suc  ( rank `  B ) ) )
2726adantl 452 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  suc  suc  ( (
rank `  A )  u.  ( rank `  { B } ) )  =  suc  suc  ( ( rank `  A )  u. 
suc  ( rank `  B
) ) )
2821, 27eqtrd 2315 1  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  << A ,  B >> )  =  suc  suc  ( ( rank `  A
)  u.  suc  ( rank `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    u. cun 3150    C_ wss 3152   {csn 3640   {cpr 3641   U.cuni 3827   Oncon0 4392   suc csuc 4394   "cima 4692   ` cfv 5255   R1cr1 7434   rankcrnk 7435   <<caltop 24490
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437  df-altop 24492
  Copyright terms: Public domain W3C validator