MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankbnd2 Unicode version

Theorem rankbnd2 7541
Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006.)
Hypothesis
Ref Expression
rankr1b.1  |-  A  e. 
_V
Assertion
Ref Expression
rankbnd2  |-  ( B  e.  On  ->  ( A. x  e.  A  ( rank `  x )  C_  B  <->  ( rank `  A
)  C_  suc  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem rankbnd2
StepHypRef Expression
1 rankuni 7535 . . . . 5  |-  ( rank `  U. A )  = 
U. ( rank `  A
)
2 rankr1b.1 . . . . . 6  |-  A  e. 
_V
32rankuni2 7527 . . . . 5  |-  ( rank `  U. A )  = 
U_ x  e.  A  ( rank `  x )
41, 3eqtr3i 2305 . . . 4  |-  U. ( rank `  A )  = 
U_ x  e.  A  ( rank `  x )
54sseq1i 3202 . . 3  |-  ( U. ( rank `  A )  C_  B  <->  U_ x  e.  A  ( rank `  x )  C_  B )
6 iunss 3943 . . 3  |-  ( U_ x  e.  A  ( rank `  x )  C_  B 
<-> 
A. x  e.  A  ( rank `  x )  C_  B )
75, 6bitr2i 241 . 2  |-  ( A. x  e.  A  ( rank `  x )  C_  B 
<-> 
U. ( rank `  A
)  C_  B )
8 rankon 7467 . . . 4  |-  ( rank `  A )  e.  On
98onssi 4628 . . 3  |-  ( rank `  A )  C_  On
10 eloni 4402 . . 3  |-  ( B  e.  On  ->  Ord  B )
11 ordunisssuc 4495 . . 3  |-  ( ( ( rank `  A
)  C_  On  /\  Ord  B )  ->  ( U. ( rank `  A )  C_  B  <->  ( rank `  A
)  C_  suc  B ) )
129, 10, 11sylancr 644 . 2  |-  ( B  e.  On  ->  ( U. ( rank `  A
)  C_  B  <->  ( rank `  A )  C_  suc  B ) )
137, 12syl5bb 248 1  |-  ( B  e.  On  ->  ( A. x  e.  A  ( rank `  x )  C_  B  <->  ( rank `  A
)  C_  suc  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   U.cuni 3827   U_ciun 3905   Ord word 4391   Oncon0 4392   suc csuc 4394   ` cfv 5255   rankcrnk 7435
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437
  Copyright terms: Public domain W3C validator