MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankcf Unicode version

Theorem rankcf 8399
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 
A form a cofinal map into  ( rank `  A
). (Contributed by Mario Carneiro, 27-May-2013.)
Assertion
Ref Expression
rankcf  |-  -.  A  ~<  ( cf `  ( rank `  A ) )

Proof of Theorem rankcf
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankon 7467 . . 3  |-  ( rank `  A )  e.  On
2 onzsl 4637 . . 3  |-  ( (
rank `  A )  e.  On  <->  ( ( rank `  A )  =  (/)  \/ 
E. x  e.  On  ( rank `  A )  =  suc  x  \/  (
( rank `  A )  e.  _V  /\  Lim  ( rank `  A ) ) ) )
31, 2mpbi 199 . 2  |-  ( (
rank `  A )  =  (/)  \/  E. x  e.  On  ( rank `  A
)  =  suc  x  \/  ( ( rank `  A
)  e.  _V  /\  Lim  ( rank `  A
) ) )
4 sdom0 6993 . . . 4  |-  -.  A  ~< 
(/)
5 fveq2 5525 . . . . . 6  |-  ( (
rank `  A )  =  (/)  ->  ( cf `  ( rank `  A
) )  =  ( cf `  (/) ) )
6 cf0 7877 . . . . . 6  |-  ( cf `  (/) )  =  (/)
75, 6syl6eq 2331 . . . . 5  |-  ( (
rank `  A )  =  (/)  ->  ( cf `  ( rank `  A
) )  =  (/) )
87breq2d 4035 . . . 4  |-  ( (
rank `  A )  =  (/)  ->  ( A  ~<  ( cf `  ( rank `  A ) )  <-> 
A  ~<  (/) ) )
94, 8mtbiri 294 . . 3  |-  ( (
rank `  A )  =  (/)  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
10 fveq2 5525 . . . . . . 7  |-  ( (
rank `  A )  =  suc  x  ->  ( cf `  ( rank `  A
) )  =  ( cf `  suc  x
) )
11 cfsuc 7883 . . . . . . 7  |-  ( x  e.  On  ->  ( cf `  suc  x )  =  1o )
1210, 11sylan9eqr 2337 . . . . . 6  |-  ( ( x  e.  On  /\  ( rank `  A )  =  suc  x )  -> 
( cf `  ( rank `  A ) )  =  1o )
13 nsuceq0 4472 . . . . . . . . 9  |-  suc  x  =/=  (/)
14 neeq1 2454 . . . . . . . . 9  |-  ( (
rank `  A )  =  suc  x  ->  (
( rank `  A )  =/=  (/)  <->  suc  x  =/=  (/) ) )
1513, 14mpbiri 224 . . . . . . . 8  |-  ( (
rank `  A )  =  suc  x  ->  ( rank `  A )  =/=  (/) )
16 fveq2 5525 . . . . . . . . . . 11  |-  ( A  =  (/)  ->  ( rank `  A )  =  (
rank `  (/) ) )
17 0elon 4445 . . . . . . . . . . . . 13  |-  (/)  e.  On
18 r1fnon 7439 . . . . . . . . . . . . . 14  |-  R1  Fn  On
19 fndm 5343 . . . . . . . . . . . . . 14  |-  ( R1  Fn  On  ->  dom  R1  =  On )
2018, 19ax-mp 8 . . . . . . . . . . . . 13  |-  dom  R1  =  On
2117, 20eleqtrri 2356 . . . . . . . . . . . 12  |-  (/)  e.  dom  R1
22 rankonid 7501 . . . . . . . . . . . 12  |-  ( (/)  e.  dom  R1  <->  ( rank `  (/) )  =  (/) )
2321, 22mpbi 199 . . . . . . . . . . 11  |-  ( rank `  (/) )  =  (/)
2416, 23syl6eq 2331 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( rank `  A )  =  (/) )
2524necon3i 2485 . . . . . . . . 9  |-  ( (
rank `  A )  =/=  (/)  ->  A  =/=  (/) )
26 rankvaln 7471 . . . . . . . . . . 11  |-  ( -.  A  e.  U. ( R1 " On )  -> 
( rank `  A )  =  (/) )
2726necon1ai 2488 . . . . . . . . . 10  |-  ( (
rank `  A )  =/=  (/)  ->  A  e.  U. ( R1 " On ) )
28 breq2 4027 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( 1o 
~<_  y  <->  1o  ~<_  A )
)
29 neeq1 2454 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
y  =/=  (/)  <->  A  =/=  (/) ) )
30 0sdom1dom 7060 . . . . . . . . . . . 12  |-  ( (/)  ~< 
y  <->  1o  ~<_  y )
31 vex 2791 . . . . . . . . . . . . 13  |-  y  e. 
_V
32310sdom 6992 . . . . . . . . . . . 12  |-  ( (/)  ~< 
y  <->  y  =/=  (/) )
3330, 32bitr3i 242 . . . . . . . . . . 11  |-  ( 1o  ~<_  y  <->  y  =/=  (/) )
3428, 29, 33vtoclbg 2844 . . . . . . . . . 10  |-  ( A  e.  U. ( R1
" On )  -> 
( 1o  ~<_  A  <->  A  =/=  (/) ) )
3527, 34syl 15 . . . . . . . . 9  |-  ( (
rank `  A )  =/=  (/)  ->  ( 1o  ~<_  A 
<->  A  =/=  (/) ) )
3625, 35mpbird 223 . . . . . . . 8  |-  ( (
rank `  A )  =/=  (/)  ->  1o  ~<_  A )
3715, 36syl 15 . . . . . . 7  |-  ( (
rank `  A )  =  suc  x  ->  1o  ~<_  A )
3837adantl 452 . . . . . 6  |-  ( ( x  e.  On  /\  ( rank `  A )  =  suc  x )  ->  1o 
~<_  A )
3912, 38eqbrtrd 4043 . . . . 5  |-  ( ( x  e.  On  /\  ( rank `  A )  =  suc  x )  -> 
( cf `  ( rank `  A ) )  ~<_  A )
4039rexlimiva 2662 . . . 4  |-  ( E. x  e.  On  ( rank `  A )  =  suc  x  ->  ( cf `  ( rank `  A
) )  ~<_  A )
41 domnsym 6987 . . . 4  |-  ( ( cf `  ( rank `  A ) )  ~<_  A  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
4240, 41syl 15 . . 3  |-  ( E. x  e.  On  ( rank `  A )  =  suc  x  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
43 nlim0 4450 . . . . . . . . . . . . . . . . 17  |-  -.  Lim  (/)
44 limeq 4404 . . . . . . . . . . . . . . . . 17  |-  ( (
rank `  A )  =  (/)  ->  ( Lim  ( rank `  A )  <->  Lim  (/) ) )
4543, 44mtbiri 294 . . . . . . . . . . . . . . . 16  |-  ( (
rank `  A )  =  (/)  ->  -.  Lim  ( rank `  A ) )
4626, 45syl 15 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  U. ( R1 " On )  ->  -.  Lim  ( rank `  A
) )
4746con4i 122 . . . . . . . . . . . . . 14  |-  ( Lim  ( rank `  A
)  ->  A  e.  U. ( R1 " On ) )
48 r1elssi 7477 . . . . . . . . . . . . . 14  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
4947, 48syl 15 . . . . . . . . . . . . 13  |-  ( Lim  ( rank `  A
)  ->  A  C_  U. ( R1 " On ) )
5049sselda 3180 . . . . . . . . . . . 12  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  x  e.  U. ( R1 " On ) )
51 ranksnb 7499 . . . . . . . . . . . 12  |-  ( x  e.  U. ( R1
" On )  -> 
( rank `  { x } )  =  suc  ( rank `  x )
)
5250, 51syl 15 . . . . . . . . . . 11  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  ( rank `  { x }
)  =  suc  ( rank `  x ) )
53 rankelb 7496 . . . . . . . . . . . . . 14  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( rank `  A ) ) )
5447, 53syl 15 . . . . . . . . . . . . 13  |-  ( Lim  ( rank `  A
)  ->  ( x  e.  A  ->  ( rank `  x )  e.  (
rank `  A )
) )
55 limsuc 4640 . . . . . . . . . . . . 13  |-  ( Lim  ( rank `  A
)  ->  ( ( rank `  x )  e.  ( rank `  A
)  <->  suc  ( rank `  x
)  e.  ( rank `  A ) ) )
5654, 55sylibd 205 . . . . . . . . . . . 12  |-  ( Lim  ( rank `  A
)  ->  ( x  e.  A  ->  suc  ( rank `  x )  e.  ( rank `  A
) ) )
5756imp 418 . . . . . . . . . . 11  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  suc  ( rank `  x )  e.  ( rank `  A
) )
5852, 57eqeltrd 2357 . . . . . . . . . 10  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  ( rank `  { x }
)  e.  ( rank `  A ) )
59 eleq1a 2352 . . . . . . . . . 10  |-  ( (
rank `  { x } )  e.  (
rank `  A )  ->  ( w  =  (
rank `  { x } )  ->  w  e.  ( rank `  A
) ) )
6058, 59syl 15 . . . . . . . . 9  |-  ( ( Lim  ( rank `  A
)  /\  x  e.  A )  ->  (
w  =  ( rank `  { x } )  ->  w  e.  (
rank `  A )
) )
6160rexlimdva 2667 . . . . . . . 8  |-  ( Lim  ( rank `  A
)  ->  ( E. x  e.  A  w  =  ( rank `  {
x } )  ->  w  e.  ( rank `  A ) ) )
6261abssdv 3247 . . . . . . 7  |-  ( Lim  ( rank `  A
)  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  C_  ( rank `  A ) )
63 snex 4216 . . . . . . . . . . . . 13  |-  { x }  e.  _V
6463dfiun2 3937 . . . . . . . . . . . 12  |-  U_ x  e.  A  { x }  =  U. { y  |  E. x  e.  A  y  =  {
x } }
65 iunid 3957 . . . . . . . . . . . 12  |-  U_ x  e.  A  { x }  =  A
6664, 65eqtr3i 2305 . . . . . . . . . . 11  |-  U. {
y  |  E. x  e.  A  y  =  { x } }  =  A
6766fveq2i 5528 . . . . . . . . . 10  |-  ( rank `  U. { y  |  E. x  e.  A  y  =  { x } } )  =  (
rank `  A )
6848sselda 3180 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  A )  ->  x  e.  U. ( R1 " On ) )
69 snwf 7481 . . . . . . . . . . . . . . 15  |-  ( x  e.  U. ( R1
" On )  ->  { x }  e.  U. ( R1 " On ) )
70 eleq1a 2352 . . . . . . . . . . . . . . 15  |-  ( { x }  e.  U. ( R1 " On )  ->  ( y  =  { x }  ->  y  e.  U. ( R1
" On ) ) )
7168, 69, 703syl 18 . . . . . . . . . . . . . 14  |-  ( ( A  e.  U. ( R1 " On )  /\  x  e.  A )  ->  ( y  =  {
x }  ->  y  e.  U. ( R1 " On ) ) )
7271rexlimdva 2667 . . . . . . . . . . . . 13  |-  ( A  e.  U. ( R1
" On )  -> 
( E. x  e.  A  y  =  {
x }  ->  y  e.  U. ( R1 " On ) ) )
7372abssdv 3247 . . . . . . . . . . . 12  |-  ( A  e.  U. ( R1
" On )  ->  { y  |  E. x  e.  A  y  =  { x } }  C_ 
U. ( R1 " On ) )
74 abrexexg 5764 . . . . . . . . . . . . 13  |-  ( A  e.  U. ( R1
" On )  ->  { y  |  E. x  e.  A  y  =  { x } }  e.  _V )
75 eleq1 2343 . . . . . . . . . . . . . 14  |-  ( z  =  { y  |  E. x  e.  A  y  =  { x } }  ->  ( z  e.  U. ( R1
" On )  <->  { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On ) ) )
76 sseq1 3199 . . . . . . . . . . . . . 14  |-  ( z  =  { y  |  E. x  e.  A  y  =  { x } }  ->  ( z 
C_  U. ( R1 " On )  <->  { y  |  E. x  e.  A  y  =  { x } }  C_ 
U. ( R1 " On ) ) )
77 vex 2791 . . . . . . . . . . . . . . 15  |-  z  e. 
_V
7877r1elss 7478 . . . . . . . . . . . . . 14  |-  ( z  e.  U. ( R1
" On )  <->  z  C_  U. ( R1 " On ) )
7975, 76, 78vtoclbg 2844 . . . . . . . . . . . . 13  |-  ( { y  |  E. x  e.  A  y  =  { x } }  e.  _V  ->  ( {
y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On )  <->  { y  |  E. x  e.  A  y  =  { x } }  C_ 
U. ( R1 " On ) ) )
8074, 79syl 15 . . . . . . . . . . . 12  |-  ( A  e.  U. ( R1
" On )  -> 
( { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On )  <->  { y  |  E. x  e.  A  y  =  { x } }  C_  U. ( R1 " On ) ) )
8173, 80mpbird 223 . . . . . . . . . . 11  |-  ( A  e.  U. ( R1
" On )  ->  { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On ) )
82 rankuni2b 7525 . . . . . . . . . . 11  |-  ( { y  |  E. x  e.  A  y  =  { x } }  e.  U. ( R1 " On )  ->  ( rank `  U. { y  |  E. x  e.  A  y  =  { x } } )  =  U_ z  e.  { y  |  E. x  e.  A  y  =  { x } }  ( rank `  z ) )
8381, 82syl 15 . . . . . . . . . 10  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. { y  |  E. x  e.  A  y  =  {
x } } )  =  U_ z  e. 
{ y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )
)
8467, 83syl5eqr 2329 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  U_ z  e.  {
y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )
)
85 fvex 5539 . . . . . . . . . . 11  |-  ( rank `  z )  e.  _V
8685dfiun2 3937 . . . . . . . . . 10  |-  U_ z  e.  { y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )  =  U. { w  |  E. z  e.  {
y  |  E. x  e.  A  y  =  { x } }
w  =  ( rank `  z ) }
87 fveq2 5525 . . . . . . . . . . . 12  |-  ( z  =  { x }  ->  ( rank `  z
)  =  ( rank `  { x } ) )
8863, 87abrexco 5766 . . . . . . . . . . 11  |-  { w  |  E. z  e.  {
y  |  E. x  e.  A  y  =  { x } }
w  =  ( rank `  z ) }  =  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }
8988unieqi 3837 . . . . . . . . . 10  |-  U. {
w  |  E. z  e.  { y  |  E. x  e.  A  y  =  { x } }
w  =  ( rank `  z ) }  =  U. { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }
9086, 89eqtri 2303 . . . . . . . . 9  |-  U_ z  e.  { y  |  E. x  e.  A  y  =  { x } } 
( rank `  z )  =  U. { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }
9184, 90syl6req 2332 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  ->  U. { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  =  ( rank `  A
) )
9247, 91syl 15 . . . . . . 7  |-  ( Lim  ( rank `  A
)  ->  U. { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  =  ( rank `  A ) )
93 fvex 5539 . . . . . . . 8  |-  ( rank `  A )  e.  _V
9493cfslb 7892 . . . . . . 7  |-  ( ( Lim  ( rank `  A
)  /\  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  C_  ( rank `  A )  /\  U. { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  =  ( rank `  A
) )  ->  ( cf `  ( rank `  A
) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) } )
9562, 92, 94mpd3an23 1279 . . . . . 6  |-  ( Lim  ( rank `  A
)  ->  ( cf `  ( rank `  A
) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) } )
96 fveq2 5525 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( rank `  y )  =  ( rank `  A
) )
9796fveq2d 5529 . . . . . . . . . 10  |-  ( y  =  A  ->  ( cf `  ( rank `  y
) )  =  ( cf `  ( rank `  A ) ) )
98 breq12 4028 . . . . . . . . . 10  |-  ( ( y  =  A  /\  ( cf `  ( rank `  y ) )  =  ( cf `  ( rank `  A ) ) )  ->  ( y  ~<  ( cf `  ( rank `  y ) )  <-> 
A  ~<  ( cf `  ( rank `  A ) ) ) )
9997, 98mpdan 649 . . . . . . . . 9  |-  ( y  =  A  ->  (
y  ~<  ( cf `  ( rank `  y ) )  <-> 
A  ~<  ( cf `  ( rank `  A ) ) ) )
100 rexeq 2737 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( E. x  e.  y  w  =  ( rank `  { x } )  <->  E. x  e.  A  w  =  ( rank `  { x } ) ) )
101100abbidv 2397 . . . . . . . . . 10  |-  ( y  =  A  ->  { w  |  E. x  e.  y  w  =  ( rank `  { x } ) }  =  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) } )
102 breq12 4028 . . . . . . . . . 10  |-  ( ( { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }  =  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  /\  y  =  A )  ->  ( { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }  ~<_  y  <->  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  ~<_  A ) )
103101, 102mpancom 650 . . . . . . . . 9  |-  ( y  =  A  ->  ( { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }  ~<_  y  <->  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  ~<_  A ) )
10499, 103imbi12d 311 . . . . . . . 8  |-  ( y  =  A  ->  (
( y  ~<  ( cf `  ( rank `  y
) )  ->  { w  |  E. x  e.  y  w  =  ( rank `  { x } ) }  ~<_  y )  <->  ( A  ~<  ( cf `  ( rank `  A ) )  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A ) ) )
105 eqid 2283 . . . . . . . . . 10  |-  ( x  e.  y  |->  ( rank `  { x } ) )  =  ( x  e.  y  |->  ( rank `  { x } ) )
106105rnmpt 4925 . . . . . . . . 9  |-  ran  (
x  e.  y  |->  (
rank `  { x } ) )  =  { w  |  E. x  e.  y  w  =  ( rank `  {
x } ) }
107 cfon 7881 . . . . . . . . . . 11  |-  ( cf `  ( rank `  y
) )  e.  On
108 sdomdom 6889 . . . . . . . . . . 11  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  y  ~<_  ( cf `  ( rank `  y
) ) )
109 ondomen 7664 . . . . . . . . . . 11  |-  ( ( ( cf `  ( rank `  y ) )  e.  On  /\  y  ~<_  ( cf `  ( rank `  y ) ) )  ->  y  e.  dom  card )
110107, 108, 109sylancr 644 . . . . . . . . . 10  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  y  e.  dom  card )
111 fvex 5539 . . . . . . . . . . . 12  |-  ( rank `  { x } )  e.  _V
112111, 105fnmpti 5372 . . . . . . . . . . 11  |-  ( x  e.  y  |->  ( rank `  { x } ) )  Fn  y
113 dffn4 5457 . . . . . . . . . . 11  |-  ( ( x  e.  y  |->  (
rank `  { x } ) )  Fn  y  <->  ( x  e.  y  |->  ( rank `  {
x } ) ) : y -onto-> ran  (
x  e.  y  |->  (
rank `  { x } ) ) )
114112, 113mpbi 199 . . . . . . . . . 10  |-  ( x  e.  y  |->  ( rank `  { x } ) ) : y -onto-> ran  ( x  e.  y 
|->  ( rank `  {
x } ) )
115 fodomnum 7684 . . . . . . . . . 10  |-  ( y  e.  dom  card  ->  ( ( x  e.  y 
|->  ( rank `  {
x } ) ) : y -onto-> ran  (
x  e.  y  |->  (
rank `  { x } ) )  ->  ran  ( x  e.  y 
|->  ( rank `  {
x } ) )  ~<_  y ) )
116110, 114, 115ee10 1366 . . . . . . . . 9  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  ran  ( x  e.  y  |->  ( rank `  { x } ) )  ~<_  y )
117106, 116syl5eqbrr 4057 . . . . . . . 8  |-  ( y 
~<  ( cf `  ( rank `  y ) )  ->  { w  |  E. x  e.  y  w  =  ( rank `  { x } ) }  ~<_  y )
118104, 117vtoclg 2843 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  -> 
( A  ~<  ( cf `  ( rank `  A
) )  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A ) )
11947, 118syl 15 . . . . . 6  |-  ( Lim  ( rank `  A
)  ->  ( A  ~<  ( cf `  ( rank `  A ) )  ->  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A ) )
120 domtr 6914 . . . . . . 7  |-  ( ( ( cf `  ( rank `  A ) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  /\  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A )  -> 
( cf `  ( rank `  A ) )  ~<_  A )
121120, 41syl 15 . . . . . 6  |-  ( ( ( cf `  ( rank `  A ) )  ~<_  { w  |  E. x  e.  A  w  =  ( rank `  {
x } ) }  /\  { w  |  E. x  e.  A  w  =  ( rank `  { x } ) }  ~<_  A )  ->  -.  A  ~<  ( cf `  ( rank `  A
) ) )
12295, 119, 121ee12an 1353 . . . . 5  |-  ( Lim  ( rank `  A
)  ->  ( A  ~<  ( cf `  ( rank `  A ) )  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) ) )
123122pm2.01d 161 . . . 4  |-  ( Lim  ( rank `  A
)  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
124123adantl 452 . . 3  |-  ( ( ( rank `  A
)  e.  _V  /\  Lim  ( rank `  A
) )  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
1259, 42, 1243jaoi 1245 . 2  |-  ( ( ( rank `  A
)  =  (/)  \/  E. x  e.  On  ( rank `  A )  =  suc  x  \/  (
( rank `  A )  e.  _V  /\  Lim  ( rank `  A ) ) )  ->  -.  A  ~<  ( cf `  ( rank `  A ) ) )
1263, 125ax-mp 8 1  |-  -.  A  ~<  ( cf `  ( rank `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   {csn 3640   U.cuni 3827   U_ciun 3905   class class class wbr 4023    e. cmpt 4077   Oncon0 4392   Lim wlim 4393   suc csuc 4394   dom cdm 4689   ran crn 4690   "cima 4692    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255   1oc1o 6472    ~<_ cdom 6861    ~< csdm 6862   R1cr1 7434   rankcrnk 7435   cardccrd 7568   cfccf 7570
This theorem is referenced by:  inatsk  8400  grur1  8442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-r1 7436  df-rank 7437  df-card 7572  df-cf 7574  df-acn 7575
  Copyright terms: Public domain W3C validator