MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankdmr1 Unicode version

Theorem rankdmr1 7489
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankdmr1  |-  ( rank `  A )  e.  dom  R1

Proof of Theorem rankdmr1
StepHypRef Expression
1 rankidb 7488 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  A  e.  ( R1 ` 
suc  ( rank `  A
) ) )
2 elfvdm 5570 . . . 4  |-  ( A  e.  ( R1 `  suc  ( rank `  A
) )  ->  suc  ( rank `  A )  e.  dom  R1 )
31, 2syl 15 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  suc  ( rank `  A
)  e.  dom  R1 )
4 r1funlim 7454 . . . . 5  |-  ( Fun 
R1  /\  Lim  dom  R1 )
54simpri 448 . . . 4  |-  Lim  dom  R1
6 limsuc 4656 . . . 4  |-  ( Lim 
dom  R1  ->  ( (
rank `  A )  e.  dom  R1  <->  suc  ( rank `  A )  e.  dom  R1 ) )
75, 6ax-mp 8 . . 3  |-  ( (
rank `  A )  e.  dom  R1  <->  suc  ( rank `  A )  e.  dom  R1 )
83, 7sylibr 203 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  e.  dom  R1 )
9 rankvaln 7487 . . 3  |-  ( -.  A  e.  U. ( R1 " On )  -> 
( rank `  A )  =  (/) )
10 limomss 4677 . . . . 5  |-  ( Lim 
dom  R1  ->  om  C_  dom  R1 )
115, 10ax-mp 8 . . . 4  |-  om  C_  dom  R1
12 peano1 4691 . . . 4  |-  (/)  e.  om
1311, 12sselii 3190 . . 3  |-  (/)  e.  dom  R1
149, 13syl6eqel 2384 . 2  |-  ( -.  A  e.  U. ( R1 " On )  -> 
( rank `  A )  e.  dom  R1 )
158, 14pm2.61i 156 1  |-  ( rank `  A )  e.  dom  R1
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    e. wcel 1696    C_ wss 3165   (/)c0 3468   U.cuni 3843   Oncon0 4408   Lim wlim 4409   suc csuc 4410   omcom 4672   dom cdm 4705   "cima 4708   Fun wfun 5265   ` cfv 5271   R1cr1 7450   rankcrnk 7451
This theorem is referenced by:  r1rankidb  7492  pwwf  7495  unwf  7498  uniwf  7507  rankr1c  7509  rankelb  7512  rankval3b  7514  rankonid  7517  rankssb  7536  rankr1id  7550
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator