MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelb Unicode version

Theorem rankelb 7512
Description: The membership relation is inherited by the rank function. Proposition 9.16 of [TakeutiZaring] p. 79. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankelb  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )

Proof of Theorem rankelb
StepHypRef Expression
1 r1elssi 7493 . . . . . 6  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  U. ( R1
" On ) )
21sseld 3192 . . . . 5  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  A  e.  U. ( R1 " On ) ) )
3 rankidn 7510 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  -.  A  e.  ( R1 `  ( rank `  A
) ) )
42, 3syl6 29 . . . 4  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) ) )
54imp 418 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  -.  A  e.  ( R1 `  ( rank `  A ) ) )
6 rankon 7483 . . . . 5  |-  ( rank `  B )  e.  On
7 rankon 7483 . . . . 5  |-  ( rank `  A )  e.  On
8 ontri1 4442 . . . . 5  |-  ( ( ( rank `  B
)  e.  On  /\  ( rank `  A )  e.  On )  ->  (
( rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
) )
96, 7, 8mp2an 653 . . . 4  |-  ( (
rank `  B )  C_  ( rank `  A
)  <->  -.  ( rank `  A )  e.  (
rank `  B )
)
10 rankdmr1 7489 . . . . . 6  |-  ( rank `  B )  e.  dom  R1
11 rankdmr1 7489 . . . . . 6  |-  ( rank `  A )  e.  dom  R1
12 r1ord3g 7467 . . . . . 6  |-  ( ( ( rank `  B
)  e.  dom  R1  /\  ( rank `  A
)  e.  dom  R1 )  ->  ( ( rank `  B )  C_  ( rank `  A )  -> 
( R1 `  ( rank `  B ) ) 
C_  ( R1 `  ( rank `  A )
) ) )
1310, 11, 12mp2an 653 . . . . 5  |-  ( (
rank `  B )  C_  ( rank `  A
)  ->  ( R1 `  ( rank `  B
) )  C_  ( R1 `  ( rank `  A
) ) )
14 r1rankidb 7492 . . . . . . 7  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  ( R1 `  ( rank `  B )
) )
1514sselda 3193 . . . . . 6  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  A  e.  ( R1
`  ( rank `  B
) ) )
16 ssel 3187 . . . . . 6  |-  ( ( R1 `  ( rank `  B ) )  C_  ( R1 `  ( rank `  A ) )  -> 
( A  e.  ( R1 `  ( rank `  B ) )  ->  A  e.  ( R1 `  ( rank `  A
) ) ) )
1715, 16syl5com 26 . . . . 5  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( R1 `  ( rank `  B )
)  C_  ( R1 `  ( rank `  A
) )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
1813, 17syl5 28 . . . 4  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( ( rank `  B
)  C_  ( rank `  A )  ->  A  e.  ( R1 `  ( rank `  A ) ) ) )
199, 18syl5bir 209 . . 3  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( -.  ( rank `  A )  e.  (
rank `  B )  ->  A  e.  ( R1
`  ( rank `  A
) ) ) )
205, 19mt3d 117 . 2  |-  ( ( B  e.  U. ( R1 " On )  /\  A  e.  B )  ->  ( rank `  A
)  e.  ( rank `  B ) )
2120ex 423 1  |-  ( B  e.  U. ( R1
" On )  -> 
( A  e.  B  ->  ( rank `  A
)  e.  ( rank `  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696    C_ wss 3165   U.cuni 3843   Oncon0 4408   dom cdm 4705   "cima 4708   ` cfv 5271   R1cr1 7450   rankcrnk 7451
This theorem is referenced by:  wfelirr  7513  rankval3b  7514  rankel  7527  rankunb  7538  rankuni2b  7541  rankcf  8415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator