MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelop Unicode version

Theorem rankelop 7764
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankelun.1  |-  A  e. 
_V
rankelun.2  |-  B  e. 
_V
rankelun.3  |-  C  e. 
_V
rankelun.4  |-  D  e. 
_V
Assertion
Ref Expression
rankelop  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  ( rank `  <. A ,  B >. )  e.  ( rank `  <. C ,  D >. ) )

Proof of Theorem rankelop
StepHypRef Expression
1 rankelun.1 . . . 4  |-  A  e. 
_V
2 rankelun.2 . . . 4  |-  B  e. 
_V
3 rankelun.3 . . . 4  |-  C  e. 
_V
4 rankelun.4 . . . 4  |-  D  e. 
_V
51, 2, 3, 4rankelpr 7763 . . 3  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  ( rank `  { A ,  B } )  e.  (
rank `  { C ,  D } ) )
6 rankon 7685 . . . . 5  |-  ( rank `  { C ,  D } )  e.  On
76onordi 4653 . . . 4  |-  Ord  ( rank `  { C ,  D } )
8 ordsucelsuc 4769 . . . 4  |-  ( Ord  ( rank `  { C ,  D }
)  ->  ( ( rank `  { A ,  B } )  e.  (
rank `  { C ,  D } )  <->  suc  ( rank `  { A ,  B } )  e.  suc  ( rank `  { C ,  D } ) ) )
97, 8ax-mp 8 . . 3  |-  ( (
rank `  { A ,  B } )  e.  ( rank `  { C ,  D }
)  <->  suc  ( rank `  { A ,  B }
)  e.  suc  ( rank `  { C ,  D } ) )
105, 9sylib 189 . 2  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  suc  ( rank `  { A ,  B } )  e. 
suc  ( rank `  { C ,  D }
) )
111, 2rankop 7748 . . 3  |-  ( rank `  <. A ,  B >. )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  B ) )
121, 2rankpr 7747 . . . 4  |-  ( rank `  { A ,  B } )  =  suc  ( ( rank `  A
)  u.  ( rank `  B ) )
13 suceq 4614 . . . 4  |-  ( (
rank `  { A ,  B } )  =  suc  ( ( rank `  A )  u.  ( rank `  B ) )  ->  suc  ( rank `  { A ,  B } )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  B ) ) )
1412, 13ax-mp 8 . . 3  |-  suc  ( rank `  { A ,  B } )  =  suc  suc  ( ( rank `  A
)  u.  ( rank `  B ) )
1511, 14eqtr4i 2435 . 2  |-  ( rank `  <. A ,  B >. )  =  suc  ( rank `  { A ,  B } )
163, 4rankop 7748 . . 3  |-  ( rank `  <. C ,  D >. )  =  suc  suc  ( ( rank `  C
)  u.  ( rank `  D ) )
173, 4rankpr 7747 . . . 4  |-  ( rank `  { C ,  D } )  =  suc  ( ( rank `  C
)  u.  ( rank `  D ) )
18 suceq 4614 . . . 4  |-  ( (
rank `  { C ,  D } )  =  suc  ( ( rank `  C )  u.  ( rank `  D ) )  ->  suc  ( rank `  { C ,  D } )  =  suc  suc  ( ( rank `  C
)  u.  ( rank `  D ) ) )
1917, 18ax-mp 8 . . 3  |-  suc  ( rank `  { C ,  D } )  =  suc  suc  ( ( rank `  C
)  u.  ( rank `  D ) )
2016, 19eqtr4i 2435 . 2  |-  ( rank `  <. C ,  D >. )  =  suc  ( rank `  { C ,  D } )
2110, 15, 203eltr4g 2495 1  |-  ( ( ( rank `  A
)  e.  ( rank `  C )  /\  ( rank `  B )  e.  ( rank `  D
) )  ->  ( rank `  <. A ,  B >. )  e.  ( rank `  <. C ,  D >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2924    u. cun 3286   {cpr 3783   <.cop 3785   Ord word 4548   suc csuc 4551   ` cfv 5421   rankcrnk 7653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-reg 7524  ax-inf2 7560
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-recs 6600  df-rdg 6635  df-r1 7654  df-rank 7655
  Copyright terms: Public domain W3C validator