MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankid Unicode version

Theorem rankid 7694
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypothesis
Ref Expression
rankid.1  |-  A  e. 
_V
Assertion
Ref Expression
rankid  |-  A  e.  ( R1 `  suc  ( rank `  A )
)

Proof of Theorem rankid
StepHypRef Expression
1 rankid.1 . . 3  |-  A  e. 
_V
2 unir1 7674 . . 3  |-  U. ( R1 " On )  =  _V
31, 2eleqtrri 2462 . 2  |-  A  e. 
U. ( R1 " On )
4 rankidb 7661 . 2  |-  ( A  e.  U. ( R1
" On )  ->  A  e.  ( R1 ` 
suc  ( rank `  A
) ) )
53, 4ax-mp 8 1  |-  A  e.  ( R1 `  suc  ( rank `  A )
)
Colors of variables: wff set class
Syntax hints:    e. wcel 1717   _Vcvv 2901   U.cuni 3959   Oncon0 4524   suc csuc 4526   "cima 4823   ` cfv 5396   R1cr1 7623   rankcrnk 7624
This theorem is referenced by:  bndrank  7702  rankval4  7728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-reg 7495  ax-inf2 7531
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-recs 6571  df-rdg 6606  df-r1 7625  df-rank 7626
  Copyright terms: Public domain W3C validator