MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranklim Structured version   Unicode version

Theorem ranklim 7760
Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006.)
Assertion
Ref Expression
ranklim  |-  ( Lim 
B  ->  ( ( rank `  A )  e.  B  <->  ( rank `  ~P A )  e.  B
) )

Proof of Theorem ranklim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 limsuc 4821 . . . 4  |-  ( Lim 
B  ->  ( ( rank `  A )  e.  B  <->  suc  ( rank `  A
)  e.  B ) )
21adantl 453 . . 3  |-  ( ( A  e.  _V  /\  Lim  B )  ->  (
( rank `  A )  e.  B  <->  suc  ( rank `  A
)  e.  B ) )
3 pweq 3794 . . . . . . . 8  |-  ( x  =  A  ->  ~P x  =  ~P A
)
43fveq2d 5724 . . . . . . 7  |-  ( x  =  A  ->  ( rank `  ~P x )  =  ( rank `  ~P A ) )
5 fveq2 5720 . . . . . . . 8  |-  ( x  =  A  ->  ( rank `  x )  =  ( rank `  A
) )
6 suceq 4638 . . . . . . . 8  |-  ( (
rank `  x )  =  ( rank `  A
)  ->  suc  ( rank `  x )  =  suc  ( rank `  A )
)
75, 6syl 16 . . . . . . 7  |-  ( x  =  A  ->  suc  ( rank `  x )  =  suc  ( rank `  A
) )
84, 7eqeq12d 2449 . . . . . 6  |-  ( x  =  A  ->  (
( rank `  ~P x
)  =  suc  ( rank `  x )  <->  ( rank `  ~P A )  =  suc  ( rank `  A
) ) )
9 vex 2951 . . . . . . 7  |-  x  e. 
_V
109rankpw 7759 . . . . . 6  |-  ( rank `  ~P x )  =  suc  ( rank `  x
)
118, 10vtoclg 3003 . . . . 5  |-  ( A  e.  _V  ->  ( rank `  ~P A )  =  suc  ( rank `  A ) )
1211eleq1d 2501 . . . 4  |-  ( A  e.  _V  ->  (
( rank `  ~P A )  e.  B  <->  suc  ( rank `  A )  e.  B
) )
1312adantr 452 . . 3  |-  ( ( A  e.  _V  /\  Lim  B )  ->  (
( rank `  ~P A )  e.  B  <->  suc  ( rank `  A )  e.  B
) )
142, 13bitr4d 248 . 2  |-  ( ( A  e.  _V  /\  Lim  B )  ->  (
( rank `  A )  e.  B  <->  ( rank `  ~P A )  e.  B
) )
15 fvprc 5714 . . . . 5  |-  ( -.  A  e.  _V  ->  (
rank `  A )  =  (/) )
16 pwexb 4745 . . . . . 6  |-  ( A  e.  _V  <->  ~P A  e.  _V )
17 fvprc 5714 . . . . . 6  |-  ( -. 
~P A  e.  _V  ->  ( rank `  ~P A )  =  (/) )
1816, 17sylnbi 298 . . . . 5  |-  ( -.  A  e.  _V  ->  (
rank `  ~P A )  =  (/) )
1915, 18eqtr4d 2470 . . . 4  |-  ( -.  A  e.  _V  ->  (
rank `  A )  =  ( rank `  ~P A ) )
2019eleq1d 2501 . . 3  |-  ( -.  A  e.  _V  ->  ( ( rank `  A
)  e.  B  <->  ( rank `  ~P A )  e.  B ) )
2120adantr 452 . 2  |-  ( ( -.  A  e.  _V  /\ 
Lim  B )  -> 
( ( rank `  A
)  e.  B  <->  ( rank `  ~P A )  e.  B ) )
2214, 21pm2.61ian 766 1  |-  ( Lim 
B  ->  ( ( rank `  A )  e.  B  <->  ( rank `  ~P A )  e.  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   (/)c0 3620   ~Pcpw 3791   Lim wlim 4574   suc csuc 4575   ` cfv 5446   rankcrnk 7679
This theorem is referenced by:  rankxplim  7793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-reg 7550  ax-inf2 7586
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-recs 6625  df-rdg 6660  df-r1 7680  df-rank 7681
  Copyright terms: Public domain W3C validator