MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpr Structured version   Unicode version

Theorem rankpr 7786
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 28-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
ranksn.1  |-  A  e. 
_V
rankun.2  |-  B  e. 
_V
Assertion
Ref Expression
rankpr  |-  ( rank `  { A ,  B } )  =  suc  ( ( rank `  A
)  u.  ( rank `  B ) )

Proof of Theorem rankpr
StepHypRef Expression
1 ranksn.1 . . 3  |-  A  e. 
_V
2 unir1 7742 . . 3  |-  U. ( R1 " On )  =  _V
31, 2eleqtrri 2511 . 2  |-  A  e. 
U. ( R1 " On )
4 rankun.2 . . 3  |-  B  e. 
_V
54, 2eleqtrri 2511 . 2  |-  B  e. 
U. ( R1 " On )
6 rankprb 7780 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  { A ,  B }
)  =  suc  (
( rank `  A )  u.  ( rank `  B
) ) )
73, 5, 6mp2an 655 1  |-  ( rank `  { A ,  B } )  =  suc  ( ( rank `  A
)  u.  ( rank `  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1653    e. wcel 1726   _Vcvv 2958    u. cun 3320   {cpr 3817   U.cuni 4017   Oncon0 4584   suc csuc 4586   "cima 4884   ` cfv 5457   R1cr1 7691   rankcrnk 7692
This theorem is referenced by:  rankelpr  7802  rankelop  7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-reg 7563  ax-inf2 7599
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-recs 6636  df-rdg 6671  df-r1 7693  df-rank 7694
  Copyright terms: Public domain W3C validator