MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1c Unicode version

Theorem rankr1c 7681
Description: A relationship between the rank function and the cumulative hierarchy of sets function  R1. Proposition 9.15(2) of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 22-Mar-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1c  |-  ( A  e.  U. ( R1
" On )  -> 
( B  =  (
rank `  A )  <->  ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) ) ) )

Proof of Theorem rankr1c
StepHypRef Expression
1 id 20 . . . 4  |-  ( B  =  ( rank `  A
)  ->  B  =  ( rank `  A )
)
2 rankdmr1 7661 . . . 4  |-  ( rank `  A )  e.  dom  R1
31, 2syl6eqel 2476 . . 3  |-  ( B  =  ( rank `  A
)  ->  B  e.  dom  R1 )
43a1i 11 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( B  =  (
rank `  A )  ->  B  e.  dom  R1 ) )
5 elfvdm 5698 . . . . 5  |-  ( A  e.  ( R1 `  suc  B )  ->  suc  B  e.  dom  R1 )
6 r1funlim 7626 . . . . . . 7  |-  ( Fun 
R1  /\  Lim  dom  R1 )
76simpri 449 . . . . . 6  |-  Lim  dom  R1
8 limsuc 4770 . . . . . 6  |-  ( Lim 
dom  R1  ->  ( B  e.  dom  R1  <->  suc  B  e. 
dom  R1 ) )
97, 8ax-mp 8 . . . . 5  |-  ( B  e.  dom  R1  <->  suc  B  e. 
dom  R1 )
105, 9sylibr 204 . . . 4  |-  ( A  e.  ( R1 `  suc  B )  ->  B  e.  dom  R1 )
1110adantl 453 . . 3  |-  ( ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) )  ->  B  e.  dom  R1 )
1211a1i 11 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( ( -.  A  e.  ( R1 `  B
)  /\  A  e.  ( R1 `  suc  B
) )  ->  B  e.  dom  R1 ) )
13 rankr1clem 7680 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( -.  A  e.  ( R1 `  B
)  <->  B  C_  ( rank `  A ) ) )
14 rankr1ag 7662 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  suc  B  e.  dom  R1 )  ->  ( A  e.  ( R1 `  suc  B )  <->  ( rank `  A
)  e.  suc  B
) )
159, 14sylan2b 462 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( A  e.  ( R1 `  suc  B )  <->  ( rank `  A
)  e.  suc  B
) )
16 rankon 7655 . . . . . . 7  |-  ( rank `  A )  e.  On
17 limord 4582 . . . . . . . . . 10  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
187, 17ax-mp 8 . . . . . . . . 9  |-  Ord  dom  R1
19 ordelon 4547 . . . . . . . . 9  |-  ( ( Ord  dom  R1  /\  B  e.  dom  R1 )  ->  B  e.  On )
2018, 19mpan 652 . . . . . . . 8  |-  ( B  e.  dom  R1  ->  B  e.  On )
2120adantl 453 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  B  e.  On )
22 onsssuc 4610 . . . . . . 7  |-  ( ( ( rank `  A
)  e.  On  /\  B  e.  On )  ->  ( ( rank `  A
)  C_  B  <->  ( rank `  A )  e.  suc  B ) )
2316, 21, 22sylancr 645 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( ( rank `  A )  C_  B  <->  (
rank `  A )  e.  suc  B ) )
2415, 23bitr4d 248 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( A  e.  ( R1 `  suc  B )  <->  ( rank `  A
)  C_  B )
)
2513, 24anbi12d 692 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( ( -.  A  e.  ( R1
`  B )  /\  A  e.  ( R1 ` 
suc  B ) )  <-> 
( B  C_  ( rank `  A )  /\  ( rank `  A )  C_  B ) ) )
26 eqss 3307 . . . 4  |-  ( B  =  ( rank `  A
)  <->  ( B  C_  ( rank `  A )  /\  ( rank `  A
)  C_  B )
)
2725, 26syl6rbbr 256 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  dom  R1 )  ->  ( B  =  ( rank `  A
)  <->  ( -.  A  e.  ( R1 `  B
)  /\  A  e.  ( R1 `  suc  B
) ) ) )
2827ex 424 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( B  e.  dom  R1 
->  ( B  =  (
rank `  A )  <->  ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) ) ) ) )
294, 12, 28pm5.21ndd 344 1  |-  ( A  e.  U. ( R1
" On )  -> 
( B  =  (
rank `  A )  <->  ( -.  A  e.  ( R1 `  B )  /\  A  e.  ( R1 `  suc  B
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    C_ wss 3264   U.cuni 3958   Ord word 4522   Oncon0 4523   Lim wlim 4524   suc csuc 4525   dom cdm 4819   "cima 4822   Fun wfun 5389   ` cfv 5395   R1cr1 7622   rankcrnk 7623
This theorem is referenced by:  rankidn  7682  rankpwi  7683  rankr1g  7692  r1tskina  8591
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-recs 6570  df-rdg 6605  df-r1 7624  df-rank 7625
  Copyright terms: Public domain W3C validator