MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ranksnb Unicode version

Theorem ranksnb 7709
Description: The rank of a singleton. Theorem 15.17(v) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ranksnb  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  { A } )  =  suc  ( rank `  A )
)

Proof of Theorem ranksnb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . . . . 6  |-  ( y  =  A  ->  ( rank `  y )  =  ( rank `  A
) )
21eleq1d 2470 . . . . 5  |-  ( y  =  A  ->  (
( rank `  y )  e.  x  <->  ( rank `  A
)  e.  x ) )
32ralsng 3806 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( A. y  e. 
{ A }  ( rank `  y )  e.  x  <->  ( rank `  A
)  e.  x ) )
43rabbidv 2908 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  { x  e.  On  |  A. y  e.  { A }  ( rank `  y )  e.  x }  =  { x  e.  On  |  ( rank `  A )  e.  x } )
54inteqd 4015 . 2  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  e.  On  |  A. y  e.  { A }  ( rank `  y )  e.  x }  =  |^| { x  e.  On  |  ( rank `  A )  e.  x } )
6 snwf 7691 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  { A }  e.  U. ( R1 " On ) )
7 rankval3b 7708 . . 3  |-  ( { A }  e.  U. ( R1 " On )  ->  ( rank `  { A } )  =  |^| { x  e.  On  |  A. y  e.  { A }  ( rank `  y
)  e.  x }
)
86, 7syl 16 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  { A } )  =  |^| { x  e.  On  |  A. y  e.  { A }  ( rank `  y
)  e.  x }
)
9 rankon 7677 . . 3  |-  ( rank `  A )  e.  On
10 onsucmin 4760 . . 3  |-  ( (
rank `  A )  e.  On  ->  suc  ( rank `  A )  =  |^| { x  e.  On  | 
( rank `  A )  e.  x } )
119, 10mp1i 12 . 2  |-  ( A  e.  U. ( R1
" On )  ->  suc  ( rank `  A
)  =  |^| { x  e.  On  |  ( rank `  A )  e.  x } )
125, 8, 113eqtr4d 2446 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  { A } )  =  suc  ( rank `  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   {csn 3774   U.cuni 3975   |^|cint 4010   Oncon0 4541   suc csuc 4543   "cima 4840   ` cfv 5413   R1cr1 7644   rankcrnk 7645
This theorem is referenced by:  rankprb  7733  ranksn  7736  rankcf  8608  rankaltopb  25728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-recs 6592  df-rdg 6627  df-r1 7646  df-rank 7647
  Copyright terms: Public domain W3C validator