MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Unicode version

Theorem rankunb 7522
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  ( (
rank `  A )  u.  ( rank `  B
) ) )

Proof of Theorem rankunb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 7482 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  <-> 
( A  u.  B
)  e.  U. ( R1 " On ) )
2 rankval3b 7498 . . . . . . 7  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  ( A  u.  B ) )  = 
|^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y } )
31, 2sylbi 187 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  |^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y } )
43eleq2d 2350 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  <->  x  e.  |^| { y  e.  On  |  A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y } ) )
5 vex 2791 . . . . . 6  |-  x  e. 
_V
65elintrab 3874 . . . . 5  |-  ( x  e.  |^| { y  e.  On  |  A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y }  <->  A. y  e.  On  ( A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y  ->  x  e.  y )
)
74, 6syl6bb 252 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  <->  A. y  e.  On  ( A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  y  ->  x  e.  y )
) )
8 elun 3316 . . . . . . 7  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
9 rankelb 7496 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( rank `  A ) ) )
10 elun1 3342 . . . . . . . . 9  |-  ( (
rank `  x )  e.  ( rank `  A
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) )
119, 10syl6 29 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
12 rankelb 7496 . . . . . . . . 9  |-  ( B  e.  U. ( R1
" On )  -> 
( x  e.  B  ->  ( rank `  x
)  e.  ( rank `  B ) ) )
13 elun2 3343 . . . . . . . . 9  |-  ( (
rank `  x )  e.  ( rank `  B
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) )
1412, 13syl6 29 . . . . . . . 8  |-  ( B  e.  U. ( R1
" On )  -> 
( x  e.  B  ->  ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
1511, 14jaao 495 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( x  e.  A  \/  x  e.  B )  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
168, 15syl5bi 208 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( A  u.  B
)  ->  ( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
1716ralrimiv 2625 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  A. x  e.  ( A  u.  B ) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) )
18 rankon 7467 . . . . . . 7  |-  ( rank `  A )  e.  On
19 rankon 7467 . . . . . . 7  |-  ( rank `  B )  e.  On
2018, 19onun2i 4508 . . . . . 6  |-  ( (
rank `  A )  u.  ( rank `  B
) )  e.  On
21 eleq2 2344 . . . . . . . . 9  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( ( rank `  x )  e.  y  <-> 
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2221ralbidv 2563 . . . . . . . 8  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y  <->  A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
23 eleq2 2344 . . . . . . . 8  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( x  e.  y  <->  x  e.  (
( rank `  A )  u.  ( rank `  B
) ) ) )
2422, 23imbi12d 311 . . . . . . 7  |-  ( y  =  ( ( rank `  A )  u.  ( rank `  B ) )  ->  ( ( A. x  e.  ( A  u.  B ) ( rank `  x )  e.  y  ->  x  e.  y )  <->  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  ( (
rank `  A )  u.  ( rank `  B
) )  ->  x  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) ) )
2524rspcv 2880 . . . . . 6  |-  ( ( ( rank `  A
)  u.  ( rank `  B ) )  e.  On  ->  ( A. y  e.  On  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  y  ->  x  e.  y )  ->  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) )  ->  x  e.  ( ( rank `  A )  u.  ( rank `  B
) ) ) ) )
2620, 25ax-mp 8 . . . . 5  |-  ( A. y  e.  On  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  y  ->  x  e.  y )  ->  ( A. x  e.  ( A  u.  B )
( rank `  x )  e.  ( ( rank `  A
)  u.  ( rank `  B ) )  ->  x  e.  ( ( rank `  A )  u.  ( rank `  B
) ) ) )
2717, 26syl5com 26 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( A. y  e.  On  ( A. x  e.  ( A  u.  B
) ( rank `  x
)  e.  y  ->  x  e.  y )  ->  x  e.  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
287, 27sylbid 206 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( x  e.  ( rank `  ( A  u.  B )
)  ->  x  e.  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2928ssrdv 3185 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  C_  ( ( rank `  A )  u.  ( rank `  B
) ) )
30 ssun1 3338 . . . . 5  |-  A  C_  ( A  u.  B
)
31 rankssb 7520 . . . . 5  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( A  C_  ( A  u.  B )  ->  ( rank `  A
)  C_  ( rank `  ( A  u.  B
) ) ) )
3230, 31mpi 16 . . . 4  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  A )  C_  ( rank `  ( A  u.  B )
) )
33 ssun2 3339 . . . . 5  |-  B  C_  ( A  u.  B
)
34 rankssb 7520 . . . . 5  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( B  C_  ( A  u.  B )  ->  ( rank `  B
)  C_  ( rank `  ( A  u.  B
) ) ) )
3533, 34mpi 16 . . . 4  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( rank `  B )  C_  ( rank `  ( A  u.  B )
) )
3632, 35unssd 3351 . . 3  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( ( rank `  A
)  u.  ( rank `  B ) )  C_  ( rank `  ( A  u.  B ) ) )
371, 36sylbi 187 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( ( rank `  A )  u.  ( rank `  B ) ) 
C_  ( rank `  ( A  u.  B )
) )
3829, 37eqssd 3196 1  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( rank `  ( A  u.  B )
)  =  ( (
rank `  A )  u.  ( rank `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    u. cun 3150    C_ wss 3152   U.cuni 3827   |^|cint 3862   Oncon0 4392   "cima 4692   ` cfv 5255   R1cr1 7434   rankcrnk 7435
This theorem is referenced by:  rankprb  7523  rankopb  7524  rankun  7528  rankaltopb  24513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437
  Copyright terms: Public domain W3C validator