MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankuni2b Unicode version

Theorem rankuni2b 7525
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
rankuni2b  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  U_ x  e.  A  ( rank `  x
) )
Distinct variable group:    x, A

Proof of Theorem rankuni2b
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniwf 7491 . . . 4  |-  ( A  e.  U. ( R1
" On )  <->  U. A  e. 
U. ( R1 " On ) )
2 rankval3b 7498 . . . 4  |-  ( U. A  e.  U. ( R1 " On )  -> 
( rank `  U. A )  =  |^| { z  e.  On  |  A. y  e.  U. A (
rank `  y )  e.  z } )
31, 2sylbi 187 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  |^| { z  e.  On  |  A. y  e.  U. A (
rank `  y )  e.  z } )
4 iuneq1 3918 . . . . . . 7  |-  ( y  =  A  ->  U_ x  e.  y  ( rank `  x )  =  U_ x  e.  A  ( rank `  x ) )
54eleq1d 2349 . . . . . 6  |-  ( y  =  A  ->  ( U_ x  e.  y 
( rank `  x )  e.  On  <->  U_ x  e.  A  ( rank `  x )  e.  On ) )
6 vex 2791 . . . . . . 7  |-  y  e. 
_V
7 rankon 7467 . . . . . . . 8  |-  ( rank `  x )  e.  On
87rgenw 2610 . . . . . . 7  |-  A. x  e.  y  ( rank `  x )  e.  On
9 iunon 6355 . . . . . . 7  |-  ( ( y  e.  _V  /\  A. x  e.  y  (
rank `  x )  e.  On )  ->  U_ x  e.  y  ( rank `  x )  e.  On )
106, 8, 9mp2an 653 . . . . . 6  |-  U_ x  e.  y  ( rank `  x )  e.  On
115, 10vtoclg 2843 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  e.  On )
12 eluni2 3831 . . . . . . 7  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
13 nfv 1605 . . . . . . . 8  |-  F/ x  A  e.  U. ( R1 " On )
14 nfiu1 3933 . . . . . . . . 9  |-  F/_ x U_ x  e.  A  ( rank `  x )
1514nfel2 2431 . . . . . . . 8  |-  F/ x
( rank `  y )  e.  U_ x  e.  A  ( rank `  x )
16 r1elssi 7477 . . . . . . . . . . 11  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  U. ( R1
" On ) )
1716sseld 3179 . . . . . . . . . 10  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  x  e.  U. ( R1 " On ) ) )
18 rankelb 7496 . . . . . . . . . 10  |-  ( x  e.  U. ( R1
" On )  -> 
( y  e.  x  ->  ( rank `  y
)  e.  ( rank `  x ) ) )
1917, 18syl6 29 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( y  e.  x  ->  ( rank `  y
)  e.  ( rank `  x ) ) ) )
20 ssiun2 3945 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( rank `  x )  C_  U_ x  e.  A  (
rank `  x )
)
2120sseld 3179 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
( rank `  y )  e.  ( rank `  x
)  ->  ( rank `  y )  e.  U_ x  e.  A  ( rank `  x ) ) )
2221a1i 10 . . . . . . . . 9  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( ( rank `  y
)  e.  ( rank `  x )  ->  ( rank `  y )  e. 
U_ x  e.  A  ( rank `  x )
) ) )
2319, 22syldd 61 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( y  e.  x  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) ) )
2413, 15, 23rexlimd 2664 . . . . . . 7  |-  ( A  e.  U. ( R1
" On )  -> 
( E. x  e.  A  y  e.  x  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2512, 24syl5bi 208 . . . . . 6  |-  ( A  e.  U. ( R1
" On )  -> 
( y  e.  U. A  ->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2625ralrimiv 2625 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  A. y  e.  U. A
( rank `  y )  e.  U_ x  e.  A  ( rank `  x )
)
27 eleq2 2344 . . . . . . 7  |-  ( z  =  U_ x  e.  A  ( rank `  x
)  ->  ( ( rank `  y )  e.  z  <->  ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2827ralbidv 2563 . . . . . 6  |-  ( z  =  U_ x  e.  A  ( rank `  x
)  ->  ( A. y  e.  U. A (
rank `  y )  e.  z  <->  A. y  e.  U. A ( rank `  y
)  e.  U_ x  e.  A  ( rank `  x ) ) )
2928elrab 2923 . . . . 5  |-  ( U_ x  e.  A  ( rank `  x )  e. 
{ z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z }  <-> 
( U_ x  e.  A  ( rank `  x )  e.  On  /\  A. y  e.  U. A ( rank `  y )  e.  U_ x  e.  A  ( rank `  x ) ) )
3011, 26, 29sylanbrc 645 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  e.  { z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z } )
31 intss1 3877 . . . 4  |-  ( U_ x  e.  A  ( rank `  x )  e. 
{ z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z }  ->  |^| { z  e.  On  |  A. y  e.  U. A ( rank `  y )  e.  z }  C_  U_ x  e.  A  ( rank `  x
) )
3230, 31syl 15 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  |^| { z  e.  On  |  A. y  e.  U. A ( rank `  y
)  e.  z } 
C_  U_ x  e.  A  ( rank `  x )
)
333, 32eqsstrd 3212 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A ) 
C_  U_ x  e.  A  ( rank `  x )
)
341biimpi 186 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  U. A  e.  U. ( R1 " On ) )
35 elssuni 3855 . . . . 5  |-  ( x  e.  A  ->  x  C_ 
U. A )
36 rankssb 7520 . . . . 5  |-  ( U. A  e.  U. ( R1 " On )  -> 
( x  C_  U. A  ->  ( rank `  x
)  C_  ( rank ` 
U. A ) ) )
3734, 35, 36syl2im 34 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( x  e.  A  ->  ( rank `  x
)  C_  ( rank ` 
U. A ) ) )
3837ralrimiv 2625 . . 3  |-  ( A  e.  U. ( R1
" On )  ->  A. x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
39 iunss 3943 . . 3  |-  ( U_ x  e.  A  ( rank `  x )  C_  ( rank `  U. A )  <->  A. x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
4038, 39sylibr 203 . 2  |-  ( A  e.  U. ( R1
" On )  ->  U_ x  e.  A  ( rank `  x )  C_  ( rank `  U. A ) )
4133, 40eqssd 3196 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  U. A )  =  U_ x  e.  A  ( rank `  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    C_ wss 3152   U.cuni 3827   |^|cint 3862   U_ciun 3905   Oncon0 4392   "cima 4692   ` cfv 5255   R1cr1 7434   rankcrnk 7435
This theorem is referenced by:  rankuni2  7527  rankcf  8399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437
  Copyright terms: Public domain W3C validator