MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflemb Unicode version

Theorem rankwflemb 7481
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rankwflemb  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
Distinct variable group:    x, A

Proof of Theorem rankwflemb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3846 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  E. y
( A  e.  y  /\  y  e.  ( R1 " On ) ) )
2 r1funlim 7454 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
32simpli 444 . . . . . . 7  |-  Fun  R1
4 fvelima 5590 . . . . . . 7  |-  ( ( Fun  R1  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  ( R1 `  x )  =  y )
53, 4mpan 651 . . . . . 6  |-  ( y  e.  ( R1 " On )  ->  E. x  e.  On  ( R1 `  x )  =  y )
6 eleq2 2357 . . . . . . . . 9  |-  ( ( R1 `  x )  =  y  ->  ( A  e.  ( R1 `  x )  <->  A  e.  y ) )
76biimprcd 216 . . . . . . . 8  |-  ( A  e.  y  ->  (
( R1 `  x
)  =  y  ->  A  e.  ( R1 `  x ) ) )
8 r1tr 7464 . . . . . . . . . . . 12  |-  Tr  ( R1 `  x )
9 trss 4138 . . . . . . . . . . . 12  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
108, 9ax-mp 8 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  A  C_  ( R1 `  x
) )
11 elpwg 3645 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  ( A  e.  ~P ( R1 `  x )  <->  A  C_  ( R1 `  x ) ) )
1210, 11mpbird 223 . . . . . . . . . 10  |-  ( A  e.  ( R1 `  x )  ->  A  e.  ~P ( R1 `  x ) )
13 elfvdm 5570 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  x  e.  dom  R1 )
14 r1sucg 7457 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
1513, 14syl 15 . . . . . . . . . 10  |-  ( A  e.  ( R1 `  x )  ->  ( R1 `  suc  x )  =  ~P ( R1
`  x ) )
1612, 15eleqtrrd 2373 . . . . . . . . 9  |-  ( A  e.  ( R1 `  x )  ->  A  e.  ( R1 `  suc  x ) )
1716a1i 10 . . . . . . . 8  |-  ( x  e.  On  ->  ( A  e.  ( R1 `  x )  ->  A  e.  ( R1 `  suc  x ) ) )
187, 17syl9 66 . . . . . . 7  |-  ( A  e.  y  ->  (
x  e.  On  ->  ( ( R1 `  x
)  =  y  ->  A  e.  ( R1 ` 
suc  x ) ) ) )
1918reximdvai 2666 . . . . . 6  |-  ( A  e.  y  ->  ( E. x  e.  On  ( R1 `  x )  =  y  ->  E. x  e.  On  A  e.  ( R1 `  suc  x
) ) )
205, 19syl5 28 . . . . 5  |-  ( A  e.  y  ->  (
y  e.  ( R1
" On )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) ) )
2120imp 418 . . . 4  |-  ( ( A  e.  y  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) )
2221exlimiv 1624 . . 3  |-  ( E. y ( A  e.  y  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
231, 22sylbi 187 . 2  |-  ( A  e.  U. ( R1
" On )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) )
24 elfvdm 5570 . . . . . 6  |-  ( A  e.  ( R1 `  suc  x )  ->  suc  x  e.  dom  R1 )
25 fvelrn 5677 . . . . . 6  |-  ( ( Fun  R1  /\  suc  x  e.  dom  R1 )  ->  ( R1 `  suc  x )  e.  ran  R1 )
263, 24, 25sylancr 644 . . . . 5  |-  ( A  e.  ( R1 `  suc  x )  ->  ( R1 `  suc  x )  e.  ran  R1 )
27 df-ima 4718 . . . . . 6  |-  ( R1
" On )  =  ran  ( R1  |`  On )
28 funrel 5288 . . . . . . . . 9  |-  ( Fun 
R1  ->  Rel  R1 )
293, 28ax-mp 8 . . . . . . . 8  |-  Rel  R1
302simpri 448 . . . . . . . . 9  |-  Lim  dom  R1
31 limord 4467 . . . . . . . . 9  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
32 ordsson 4597 . . . . . . . . 9  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
3330, 31, 32mp2b 9 . . . . . . . 8  |-  dom  R1  C_  On
34 relssres 5008 . . . . . . . 8  |-  ( ( Rel  R1  /\  dom  R1  C_  On )  ->  ( R1  |`  On )  =  R1 )
3529, 33, 34mp2an 653 . . . . . . 7  |-  ( R1  |`  On )  =  R1
3635rneqi 4921 . . . . . 6  |-  ran  ( R1  |`  On )  =  ran  R1
3727, 36eqtri 2316 . . . . 5  |-  ( R1
" On )  =  ran  R1
3826, 37syl6eleqr 2387 . . . 4  |-  ( A  e.  ( R1 `  suc  x )  ->  ( R1 `  suc  x )  e.  ( R1 " On ) )
39 elunii 3848 . . . 4  |-  ( ( A  e.  ( R1
`  suc  x )  /\  ( R1 `  suc  x )  e.  ( R1 " On ) )  ->  A  e.  U. ( R1 " On ) )
4038, 39mpdan 649 . . 3  |-  ( A  e.  ( R1 `  suc  x )  ->  A  e.  U. ( R1 " On ) )
4140rexlimivw 2676 . 2  |-  ( E. x  e.  On  A  e.  ( R1 `  suc  x )  ->  A  e.  U. ( R1 " On ) )
4223, 41impbii 180 1  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   Tr wtr 4129   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Rel wrel 4710   Fun wfun 5265   ` cfv 5271   R1cr1 7450
This theorem is referenced by:  rankf  7482  r1elwf  7484  rankvalb  7485  rankidb  7488  rankwflem  7503  tcrank  7570  dfac12r  7788
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452
  Copyright terms: Public domain W3C validator