MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim2 Unicode version

Theorem rankxplim2 7737
Description: If the rank of a cross product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxplim2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )

Proof of Theorem rankxplim2
StepHypRef Expression
1 0ellim 4584 . . . 4  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  (/)  e.  ( rank `  ( A  X.  B
) ) )
2 n0i 3576 . . . 4  |-  ( (/)  e.  ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
31, 2syl 16 . . 3  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
4 df-ne 2552 . . . 4  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( A  X.  B )  =  (/) )
5 rankxplim.1 . . . . . . 7  |-  A  e. 
_V
6 rankxplim.2 . . . . . . 7  |-  B  e. 
_V
75, 6xpex 4930 . . . . . 6  |-  ( A  X.  B )  e. 
_V
87rankeq0 7720 . . . . 5  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
98notbii 288 . . . 4  |-  ( -.  ( A  X.  B
)  =  (/)  <->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
104, 9bitr2i 242 . . 3  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  <->  ( A  X.  B )  =/=  (/) )
113, 10sylib 189 . 2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  ( A  X.  B )  =/=  (/) )
12 limuni2 4583 . . . 4  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. ( rank `  ( A  X.  B ) ) )
13 limuni2 4583 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  Lim  U. U. ( rank `  ( A  X.  B ) ) )
1412, 13syl 16 . . 3  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. U. ( rank `  ( A  X.  B ) ) )
15 rankuni 7722 . . . . . 6  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
16 rankuni 7722 . . . . . . 7  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
1716unieqi 3967 . . . . . 6  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
1815, 17eqtr2i 2408 . . . . 5  |-  U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  U. U. ( A  X.  B
) )
19 unixp 5342 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
2019fveq2d 5672 . . . . 5  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank ` 
U. U. ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
2118, 20syl5eq 2431 . . . 4  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
22 limeq 4534 . . . 4  |-  ( U. U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
)  ->  ( Lim  U.
U. ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
2321, 22syl 16 . . 3  |-  ( ( A  X.  B )  =/=  (/)  ->  ( Lim  U.
U. ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
2414, 23syl5ib 211 . 2  |-  ( ( A  X.  B )  =/=  (/)  ->  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B )
) ) )
2511, 24mpcom 34 1  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717    =/= wne 2550   _Vcvv 2899    u. cun 3261   (/)c0 3571   U.cuni 3957   Lim wlim 4523    X. cxp 4816   ` cfv 5394   rankcrnk 7622
This theorem is referenced by:  rankxpsuc  7739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-reg 7493  ax-inf2 7529
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-recs 6569  df-rdg 6604  df-r1 7623  df-rank 7624
  Copyright terms: Public domain W3C validator