MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxplim3 Unicode version

Theorem rankxplim3 7551
Description: The rank of a cross product is a limit ordinal iff its union is. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxplim3  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )

Proof of Theorem rankxplim3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limuni2 4453 . 2  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  U. ( rank `  ( A  X.  B ) ) )
2 0ellim 4454 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  (/)  e.  U. ( rank `  ( A  X.  B ) ) )
3 n0i 3460 . . . 4  |-  ( (/)  e.  U. ( rank `  ( A  X.  B ) )  ->  -.  U. ( rank `  ( A  X.  B ) )  =  (/) )
4 unieq 3836 . . . . . 6  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  ->  U. ( rank `  ( A  X.  B ) )  =  U. (/) )
5 uni0 3854 . . . . . 6  |-  U. (/)  =  (/)
64, 5syl6eq 2331 . . . . 5  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  ->  U. ( rank `  ( A  X.  B ) )  =  (/) )
76con3i 127 . . . 4  |-  ( -. 
U. ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
82, 3, 73syl 18 . . 3  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
9 rankon 7467 . . . . . . . . . 10  |-  ( rank `  ( A  u.  B
) )  e.  On
109onsuci 4629 . . . . . . . . 9  |-  suc  ( rank `  ( A  u.  B ) )  e.  On
1110onsuci 4629 . . . . . . . 8  |-  suc  suc  ( rank `  ( A  u.  B ) )  e.  On
1211elexi 2797 . . . . . . 7  |-  suc  suc  ( rank `  ( A  u.  B ) )  e. 
_V
1312sucid 4471 . . . . . 6  |-  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) )
1411onsuci 4629 . . . . . . . 8  |-  suc  suc  suc  ( rank `  ( A  u.  B )
)  e.  On
15 ontri1 4426 . . . . . . . 8  |-  ( ( suc  suc  suc  ( rank `  ( A  u.  B
) )  e.  On  /\ 
suc  suc  ( rank `  ( A  u.  B )
)  e.  On )  ->  ( suc  suc  suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )  <->  -.  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) ) ) )
1614, 11, 15mp2an 653 . . . . . . 7  |-  ( suc 
suc  suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )  <->  -.  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  suc  suc  ( rank `  ( A  u.  B
) ) )
1716con2bii 322 . . . . . 6  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  e.  suc  suc  suc  ( rank `  ( A  u.  B )
)  <->  -.  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  suc  suc  ( rank `  ( A  u.  B )
) )
1813, 17mpbi 199 . . . . 5  |-  -.  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) )
19 rankxplim.1 . . . . . . 7  |-  A  e. 
_V
20 rankxplim.2 . . . . . . 7  |-  B  e. 
_V
2119, 20rankxpu 7548 . . . . . 6  |-  ( rank `  ( A  X.  B
) )  C_  suc  suc  ( rank `  ( A  u.  B )
)
22 sstr 3187 . . . . . 6  |-  ( ( suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) )  /\  ( rank `  ( A  X.  B ) )  C_  suc  suc  ( rank `  ( A  u.  B )
) )  ->  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) ) )
2321, 22mpan2 652 . . . . 5  |-  ( suc 
suc  suc  ( rank `  ( A  u.  B )
)  C_  ( rank `  ( A  X.  B
) )  ->  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  suc  suc  ( rank `  ( A  u.  B ) ) )
2418, 23mto 167 . . . 4  |-  -.  suc  suc 
suc  ( rank `  ( A  u.  B )
)  C_  ( rank `  ( A  X.  B
) )
25 reeanv 2707 . . . . 5  |-  ( E. x  e.  On  E. y  e.  On  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  <->  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
26 simprl 732 . . . . . . . . . . . . 13  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( rank `  ( A  u.  B )
)  =  suc  x
)
27 simpr 447 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  -> 
( rank `  ( A  u.  B ) )  =  suc  x )
28 rankuni 7535 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
29 rankuni 7535 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
3029unieqi 3837 . . . . . . . . . . . . . . . . . . . . . 22  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
3128, 30eqtri 2303 . . . . . . . . . . . . . . . . . . . . 21  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
32 df-ne 2448 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( A  X.  B )  =  (/) )
3319, 20xpex 4801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A  X.  B )  e. 
_V
3433rankeq0 7533 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
3534notbii 287 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -.  ( A  X.  B
)  =  (/)  <->  -.  ( rank `  ( A  X.  B ) )  =  (/) )
3632, 35bitr2i 241 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  <->  ( A  X.  B )  =/=  (/) )
378, 36sylib 188 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( A  X.  B )  =/=  (/) )
38 unixp 5205 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
3937, 38syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
4039fveq2d 5529 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  U. U. ( A  X.  B
) )  =  (
rank `  ( A  u.  B ) ) )
4131, 40syl5reqr 2330 . . . . . . . . . . . . . . . . . . . 20  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  =  U. U. ( rank `  ( A  X.  B ) ) )
42 eqimss 3230 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
rank `  ( A  u.  B ) )  = 
U. U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  C_  U. U. ( rank `  ( A  X.  B ) ) )
4341, 42syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( rank `  ( A  u.  B )
)  C_  U. U. ( rank `  ( A  X.  B ) ) )
4443adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  -> 
( rank `  ( A  u.  B ) )  C_  U.
U. ( rank `  ( A  X.  B ) ) )
4527, 44eqsstr3d 3213 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  suc  x  C_  U. U. ( rank `  ( A  X.  B ) ) )
4645adantrr 697 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  C_  U. U. ( rank `  ( A  X.  B ) ) )
47 limuni 4452 . . . . . . . . . . . . . . . . 17  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  U. ( rank `  ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) ) )
4847adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  U. ( rank `  ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) ) )
4946, 48sseqtr4d 3215 . . . . . . . . . . . . . . 15  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) )
50 vex 2791 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
51 rankon 7467 . . . . . . . . . . . . . . . . . 18  |-  ( rank `  ( A  X.  B
) )  e.  On
5251onordi 4497 . . . . . . . . . . . . . . . . 17  |-  Ord  ( rank `  ( A  X.  B ) )
53 orduni 4585 . . . . . . . . . . . . . . . . 17  |-  ( Ord  ( rank `  ( A  X.  B ) )  ->  Ord  U. ( rank `  ( A  X.  B ) ) )
5452, 53ax-mp 8 . . . . . . . . . . . . . . . 16  |-  Ord  U. ( rank `  ( A  X.  B ) )
55 ordelsuc 4611 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  _V  /\  Ord  U. ( rank `  ( A  X.  B ) ) )  ->  ( x  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) ) )
5650, 54, 55mp2an 653 . . . . . . . . . . . . . . 15  |-  ( x  e.  U. ( rank `  ( A  X.  B
) )  <->  suc  x  C_  U. ( rank `  ( A  X.  B ) ) )
5749, 56sylibr 203 . . . . . . . . . . . . . 14  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  x  e.  U. ( rank `  ( A  X.  B ) ) )
58 limsuc 4640 . . . . . . . . . . . . . . 15  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( x  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) ) )
5958adantr 451 . . . . . . . . . . . . . 14  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( x  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) ) )
6057, 59mpbid 201 . . . . . . . . . . . . 13  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  x  e.  U. ( rank `  ( A  X.  B ) ) )
6126, 60eqeltrd 2357 . . . . . . . . . . . 12  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( rank `  ( A  u.  B )
)  e.  U. ( rank `  ( A  X.  B ) ) )
62 limsuc 4640 . . . . . . . . . . . . 13  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) ) )
6362adantr 451 . . . . . . . . . . . 12  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) ) )
6461, 63mpbid 201 . . . . . . . . . . 11  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  ( rank `  ( A  u.  B
) )  e.  U. ( rank `  ( A  X.  B ) ) )
65 ordsucelsuc 4613 . . . . . . . . . . . 12  |-  ( Ord  U. ( rank `  ( A  X.  B ) )  ->  ( suc  ( rank `  ( A  u.  B ) )  e. 
U. ( rank `  ( A  X.  B ) )  <->  suc  suc  ( rank `  ( A  u.  B )
)  e.  suc  U. ( rank `  ( A  X.  B ) ) ) )
6654, 65ax-mp 8 . . . . . . . . . . 11  |-  ( suc  ( rank `  ( A  u.  B )
)  e.  U. ( rank `  ( A  X.  B ) )  <->  suc  suc  ( rank `  ( A  u.  B ) )  e. 
suc  U. ( rank `  ( A  X.  B ) ) )
6764, 66sylib 188 . . . . . . . . . 10  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  ( rank `  ( A  u.  B
) )  e.  suc  U. ( rank `  ( A  X.  B ) ) )
68 onsucuni2 4625 . . . . . . . . . . . 12  |-  ( ( ( rank `  ( A  X.  B ) )  e.  On  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
6951, 68mpan 651 . . . . . . . . . . 11  |-  ( (
rank `  ( A  X.  B ) )  =  suc  y  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7069ad2antll 709 . . . . . . . . . 10  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7167, 70eleqtrd 2359 . . . . . . . . 9  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  ( rank `  ( A  u.  B
) )  e.  (
rank `  ( A  X.  B ) ) )
7211, 51onsucssi 4632 . . . . . . . . 9  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  e.  ( rank `  ( A  X.  B
) )  <->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) )
7371, 72sylib 188 . . . . . . . 8  |-  ( ( Lim  U. ( rank `  ( A  X.  B
) )  /\  (
( rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) )
7473ex 423 . . . . . . 7  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( (
rank `  ( A  u.  B ) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) ) ) )
7574a1d 22 . . . . . 6  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( x  e.  On  /\  y  e.  On )  ->  (
( ( rank `  ( A  u.  B )
)  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) ) ) )
7675rexlimdvv 2673 . . . . 5  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( E. x  e.  On  E. y  e.  On  ( ( rank `  ( A  u.  B
) )  =  suc  x  /\  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B ) )  C_  ( rank `  ( A  X.  B ) ) ) )
7725, 76syl5bir 209 . . . 4  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  ( ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  suc  suc  suc  ( rank `  ( A  u.  B
) )  C_  ( rank `  ( A  X.  B ) ) ) )
7824, 77mtoi 169 . . 3  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
79 ianor 474 . . . . . 6  |-  ( -.  ( E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  <->  ( -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  \/  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )
80 un00 3490 . . . . . . . . . . . . . 14  |-  ( ( A  =  (/)  /\  B  =  (/) )  <->  ( A  u.  B )  =  (/) )
81 olc 373 . . . . . . . . . . . . . . 15  |-  ( B  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) )
8281adantl 452 . . . . . . . . . . . . . 14  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  =  (/)  \/  B  =  (/) ) )
8380, 82sylbir 204 . . . . . . . . . . . . 13  |-  ( ( A  u.  B )  =  (/)  ->  ( A  =  (/)  \/  B  =  (/) ) )
84 xpeq0 5100 . . . . . . . . . . . . 13  |-  ( ( A  X.  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) )
8583, 84sylibr 203 . . . . . . . . . . . 12  |-  ( ( A  u.  B )  =  (/)  ->  ( A  X.  B )  =  (/) )
8685con3i 127 . . . . . . . . . . 11  |-  ( -.  ( A  X.  B
)  =  (/)  ->  -.  ( A  u.  B
)  =  (/) )
8735, 86sylbir 204 . . . . . . . . . 10  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( A  u.  B )  =  (/) )
8819, 20unex 4518 . . . . . . . . . . . 12  |-  ( A  u.  B )  e. 
_V
8988rankeq0 7533 . . . . . . . . . . 11  |-  ( ( A  u.  B )  =  (/)  <->  ( rank `  ( A  u.  B )
)  =  (/) )
9089notbii 287 . . . . . . . . . 10  |-  ( -.  ( A  u.  B
)  =  (/)  <->  -.  ( rank `  ( A  u.  B ) )  =  (/) )
9187, 90sylib 188 . . . . . . . . 9  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  -.  ( rank `  ( A  u.  B ) )  =  (/) )
929onordi 4497 . . . . . . . . . . 11  |-  Ord  ( rank `  ( A  u.  B ) )
93 ordzsl 4636 . . . . . . . . . . 11  |-  ( Ord  ( rank `  ( A  u.  B )
)  <->  ( ( rank `  ( A  u.  B
) )  =  (/)  \/ 
E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  u.  B ) ) ) )
9492, 93mpbi 199 . . . . . . . . . 10  |-  ( (
rank `  ( A  u.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  \/  Lim  ( rank `  ( A  u.  B )
) )
95943ori 1242 . . . . . . . . 9  |-  ( ( -.  ( rank `  ( A  u.  B )
)  =  (/)  /\  -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  Lim  ( rank `  ( A  u.  B )
) )
9691, 95sylan 457 . . . . . . . 8  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x )  ->  Lim  ( rank `  ( A  u.  B )
) )
9796ex 423 . . . . . . 7  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -. 
E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  ->  Lim  ( rank `  ( A  u.  B ) ) ) )
98 ordzsl 4636 . . . . . . . . . 10  |-  ( Ord  ( rank `  ( A  X.  B ) )  <-> 
( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
9952, 98mpbi 199 . . . . . . . . 9  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  \/ 
Lim  ( rank `  ( A  X.  B ) ) )
100993ori 1242 . . . . . . . 8  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  Lim  ( rank `  ( A  X.  B ) ) )
101100ex 423 . . . . . . 7  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -. 
E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y  ->  Lim  ( rank `  ( A  X.  B ) ) ) )
10297, 101orim12d 811 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( ( -.  E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  \/  -.  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  ->  ( Lim  ( rank `  ( A  u.  B ) )  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) ) )
10379, 102syl5bi 208 . . . . 5  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( -.  ( E. x  e.  On  ( rank `  ( A  u.  B )
)  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y )  -> 
( Lim  ( rank `  ( A  u.  B
) )  \/  Lim  ( rank `  ( A  X.  B ) ) ) ) )
104103imp 418 . . . 4  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( Lim  ( rank `  ( A  u.  B ) )  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
105 simpl 443 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  Lim  ( rank `  ( A  u.  B ) ) )
10634necon3abii 2476 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
10719, 20rankxplim 7549 . . . . . . . . . 10  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  ( A  X.  B )  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
108106, 107sylan2br 462 . . . . . . . . 9  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  ( rank `  ( A  X.  B
) )  =  (
rank `  ( A  u.  B ) ) )
109 limeq 4404 . . . . . . . . 9  |-  ( (
rank `  ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
)  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B
) ) ) )
110108, 109syl 15 . . . . . . . 8  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  ( rank `  ( A  u.  B )
) ) )
111105, 110mpbird 223 . . . . . . 7  |-  ( ( Lim  ( rank `  ( A  u.  B )
)  /\  -.  ( rank `  ( A  X.  B ) )  =  (/) )  ->  Lim  ( rank `  ( A  X.  B ) ) )
112111expcom 424 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( Lim  ( rank `  ( A  u.  B )
)  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
113 idd 21 . . . . . 6  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
114112, 113jaod 369 . . . . 5  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( ( Lim  ( rank `  ( A  u.  B )
)  \/  Lim  ( rank `  ( A  X.  B ) ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
115114adantr 451 . . . 4  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  ( ( Lim  ( rank `  ( A  u.  B )
)  \/  Lim  ( rank `  ( A  X.  B ) ) )  ->  Lim  ( rank `  ( A  X.  B
) ) ) )
116104, 115mpd 14 . . 3  |-  ( ( -.  ( rank `  ( A  X.  B ) )  =  (/)  /\  -.  ( E. x  e.  On  ( rank `  ( A  u.  B ) )  =  suc  x  /\  E. y  e.  On  ( rank `  ( A  X.  B ) )  =  suc  y ) )  ->  Lim  ( rank `  ( A  X.  B
) ) )
1178, 78, 116syl2anc 642 . 2  |-  ( Lim  U. ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  X.  B
) ) )
1181, 117impbii 180 1  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   _Vcvv 2788    u. cun 3150    C_ wss 3152   (/)c0 3455   U.cuni 3827   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394    X. cxp 4687   ` cfv 5255   rankcrnk 7435
This theorem is referenced by:  rankxpsuc  7552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437
  Copyright terms: Public domain W3C validator