MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpsuc Unicode version

Theorem rankxpsuc 7552
Description: The rank of a cross product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of [Kunen] p. 107. See rankxplim 7549 for the limit ordinal case. (Contributed by NM, 19-Sep-2006.)
Hypotheses
Ref Expression
rankxplim.1  |-  A  e. 
_V
rankxplim.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxpsuc  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  suc  suc  ( rank `  ( A  u.  B
) ) )

Proof of Theorem rankxpsuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rankuni 7535 . . . . . . . 8  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. ( rank `  U. ( A  X.  B ) )
2 rankuni 7535 . . . . . . . . 9  |-  ( rank `  U. ( A  X.  B ) )  = 
U. ( rank `  ( A  X.  B ) )
32unieqi 3837 . . . . . . . 8  |-  U. ( rank `  U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
41, 3eqtri 2303 . . . . . . 7  |-  ( rank `  U. U. ( A  X.  B ) )  =  U. U. ( rank `  ( A  X.  B ) )
5 unixp 5205 . . . . . . . 8  |-  ( ( A  X.  B )  =/=  (/)  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
65fveq2d 5529 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank ` 
U. U. ( A  X.  B ) )  =  ( rank `  ( A  u.  B )
) )
74, 6syl5reqr 2330 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  ( rank `  ( A  u.  B
) )  =  U. U. ( rank `  ( A  X.  B ) ) )
8 suc11reg 7320 . . . . . 6  |-  ( suc  ( rank `  ( A  u.  B )
)  =  suc  U. U. ( rank `  ( A  X.  B ) )  <-> 
( rank `  ( A  u.  B ) )  = 
U. U. ( rank `  ( A  X.  B ) ) )
97, 8sylibr 203 . . . . 5  |-  ( ( A  X.  B )  =/=  (/)  ->  suc  ( rank `  ( A  u.  B
) )  =  suc  U.
U. ( rank `  ( A  X.  B ) ) )
109adantl 452 . . . 4  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  ( rank `  ( A  u.  B )
)  =  suc  U. U. ( rank `  ( A  X.  B ) ) )
11 fvex 5539 . . . . . . . . . . . . . 14  |-  ( rank `  ( A  u.  B
) )  e.  _V
12 eleq1 2343 . . . . . . . . . . . . . 14  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  (
( rank `  ( A  u.  B ) )  e. 
_V 
<->  suc  C  e.  _V ) )
1311, 12mpbii 202 . . . . . . . . . . . . 13  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  suc  C  e.  _V )
14 sucexb 4600 . . . . . . . . . . . . 13  |-  ( C  e.  _V  <->  suc  C  e. 
_V )
1513, 14sylibr 203 . . . . . . . . . . . 12  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  C  e.  _V )
16 nlimsucg 4633 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  -.  Lim  suc  C )
1715, 16syl 15 . . . . . . . . . . 11  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  suc  C )
18 limeq 4404 . . . . . . . . . . 11  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  ( Lim  ( rank `  ( A  u.  B )
)  <->  Lim  suc  C )
)
1917, 18mtbird 292 . . . . . . . . . 10  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  ( rank `  ( A  u.  B )
) )
20 rankxplim.1 . . . . . . . . . . 11  |-  A  e. 
_V
21 rankxplim.2 . . . . . . . . . . 11  |-  B  e. 
_V
2220, 21rankxplim2 7550 . . . . . . . . . 10  |-  ( Lim  ( rank `  ( A  X.  B ) )  ->  Lim  ( rank `  ( A  u.  B
) ) )
2319, 22nsyl 113 . . . . . . . . 9  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
2420, 21xpex 4801 . . . . . . . . . . . . . 14  |-  ( A  X.  B )  e. 
_V
2524rankeq0 7533 . . . . . . . . . . . . 13  |-  ( ( A  X.  B )  =  (/)  <->  ( rank `  ( A  X.  B ) )  =  (/) )
2625necon3abii 2476 . . . . . . . . . . . 12  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  ( rank `  ( A  X.  B
) )  =  (/) )
27 rankon 7467 . . . . . . . . . . . . . . . 16  |-  ( rank `  ( A  X.  B
) )  e.  On
2827onordi 4497 . . . . . . . . . . . . . . 15  |-  Ord  ( rank `  ( A  X.  B ) )
29 ordzsl 4636 . . . . . . . . . . . . . . 15  |-  ( Ord  ( rank `  ( A  X.  B ) )  <-> 
( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
3028, 29mpbi 199 . . . . . . . . . . . . . 14  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) )
31 3orass 937 . . . . . . . . . . . . . 14  |-  ( ( ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) )  <->  ( ( rank `  ( A  X.  B
) )  =  (/)  \/  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) ) )
3230, 31mpbi 199 . . . . . . . . . . . . 13  |-  ( (
rank `  ( A  X.  B ) )  =  (/)  \/  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  ( rank `  ( A  X.  B ) ) ) )
3332ori 364 . . . . . . . . . . . 12  |-  ( -.  ( rank `  ( A  X.  B ) )  =  (/)  ->  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  X.  B ) ) ) )
3426, 33sylbi 187 . . . . . . . . . . 11  |-  ( ( A  X.  B )  =/=  (/)  ->  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  ( rank `  ( A  X.  B ) ) ) )
3534ord 366 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  Lim  ( rank `  ( A  X.  B ) ) ) )
3635con1d 116 . . . . . . . . 9  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  Lim  ( rank `  ( A  X.  B ) )  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x ) )
3723, 36syl5com 26 . . . . . . . 8  |-  ( (
rank `  ( A  u.  B ) )  =  suc  C  ->  (
( A  X.  B
)  =/=  (/)  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x ) )
38 vex 2791 . . . . . . . . . . . 12  |-  x  e. 
_V
39 nlimsucg 4633 . . . . . . . . . . . 12  |-  ( x  e.  _V  ->  -.  Lim  suc  x )
4038, 39ax-mp 8 . . . . . . . . . . 11  |-  -.  Lim  suc  x
41 limeq 4404 . . . . . . . . . . 11  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  suc  x ) )
4240, 41mtbiri 294 . . . . . . . . . 10  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
4342rexlimivw 2663 . . . . . . . . 9  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  ( rank `  ( A  X.  B ) ) )
4420, 21rankxplim3 7551 . . . . . . . . 9  |-  ( Lim  ( rank `  ( A  X.  B ) )  <->  Lim  U. ( rank `  ( A  X.  B ) ) )
4543, 44sylnib 295 . . . . . . . 8  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  -.  Lim  U. ( rank `  ( A  X.  B ) ) )
4637, 45syl6com 31 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( rank `  ( A  u.  B ) )  =  suc  C  ->  -.  Lim  U. ( rank `  ( A  X.  B ) ) ) )
47 unixp0 5206 . . . . . . . . . . . 12  |-  ( ( A  X.  B )  =  (/)  <->  U. ( A  X.  B )  =  (/) )
4824uniex 4516 . . . . . . . . . . . . 13  |-  U. ( A  X.  B )  e. 
_V
4948rankeq0 7533 . . . . . . . . . . . 12  |-  ( U. ( A  X.  B
)  =  (/)  <->  ( rank ` 
U. ( A  X.  B ) )  =  (/) )
502eqeq1i 2290 . . . . . . . . . . . 12  |-  ( (
rank `  U. ( A  X.  B ) )  =  (/)  <->  U. ( rank `  ( A  X.  B ) )  =  (/) )
5147, 49, 503bitri 262 . . . . . . . . . . 11  |-  ( ( A  X.  B )  =  (/)  <->  U. ( rank `  ( A  X.  B ) )  =  (/) )
5251necon3abii 2476 . . . . . . . . . 10  |-  ( ( A  X.  B )  =/=  (/)  <->  -.  U. ( rank `  ( A  X.  B ) )  =  (/) )
53 onuni 4584 . . . . . . . . . . . . . . 15  |-  ( (
rank `  ( A  X.  B ) )  e.  On  ->  U. ( rank `  ( A  X.  B ) )  e.  On )
5427, 53ax-mp 8 . . . . . . . . . . . . . 14  |-  U. ( rank `  ( A  X.  B ) )  e.  On
5554onordi 4497 . . . . . . . . . . . . 13  |-  Ord  U. ( rank `  ( A  X.  B ) )
56 ordzsl 4636 . . . . . . . . . . . . 13  |-  ( Ord  U. ( rank `  ( A  X.  B ) )  <-> 
( U. ( rank `  ( A  X.  B
) )  =  (/)  \/ 
E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/ 
Lim  U. ( rank `  ( A  X.  B ) ) ) )
5755, 56mpbi 199 . . . . . . . . . . . 12  |-  ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) )
58 3orass 937 . . . . . . . . . . . 12  |-  ( ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) )  <-> 
( U. ( rank `  ( A  X.  B
) )  =  (/)  \/  ( E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) ) )
5957, 58mpbi 199 . . . . . . . . . . 11  |-  ( U. ( rank `  ( A  X.  B ) )  =  (/)  \/  ( E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6059ori 364 . . . . . . . . . 10  |-  ( -. 
U. ( rank `  ( A  X.  B ) )  =  (/)  ->  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6152, 60sylbi 187 . . . . . . . . 9  |-  ( ( A  X.  B )  =/=  (/)  ->  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  \/  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6261ord 366 . . . . . . . 8  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  Lim  U. ( rank `  ( A  X.  B ) ) ) )
6362con1d 116 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ( -.  Lim  U. ( rank `  ( A  X.  B ) )  ->  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x ) )
6446, 63syld 40 . . . . . 6  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( rank `  ( A  u.  B ) )  =  suc  C  ->  E. x  e.  On  U. ( rank `  ( A  X.  B
) )  =  suc  x ) )
6564impcom 419 . . . . 5  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x )
66 onsucuni2 4625 . . . . . . 7  |-  ( ( U. ( rank `  ( A  X.  B ) )  e.  On  /\  U. ( rank `  ( A  X.  B ) )  =  suc  x )  ->  suc  U. U. ( rank `  ( A  X.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
6754, 66mpan 651 . . . . . 6  |-  ( U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U.
U. ( rank `  ( A  X.  B ) )  =  U. ( rank `  ( A  X.  B
) ) )
6867rexlimivw 2663 . . . . 5  |-  ( E. x  e.  On  U. ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U.
U. ( rank `  ( A  X.  B ) )  =  U. ( rank `  ( A  X.  B
) ) )
6965, 68syl 15 . . . 4  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  U. U. ( rank `  ( A  X.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
7010, 69eqtrd 2315 . . 3  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  ( rank `  ( A  u.  B )
)  =  U. ( rank `  ( A  X.  B ) ) )
71 suc11reg 7320 . . 3  |-  ( suc 
suc  ( rank `  ( A  u.  B )
)  =  suc  U. ( rank `  ( A  X.  B ) )  <->  suc  ( rank `  ( A  u.  B
) )  =  U. ( rank `  ( A  X.  B ) ) )
7270, 71sylibr 203 . 2  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  suc  ( rank `  ( A  u.  B )
)  =  suc  U. ( rank `  ( A  X.  B ) ) )
7337imp 418 . . 3  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x )
74 onsucuni2 4625 . . . . 5  |-  ( ( ( rank `  ( A  X.  B ) )  e.  On  /\  ( rank `  ( A  X.  B ) )  =  suc  x )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7527, 74mpan 651 . . . 4  |-  ( (
rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7675rexlimivw 2663 . . 3  |-  ( E. x  e.  On  ( rank `  ( A  X.  B ) )  =  suc  x  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7773, 76syl 15 . 2  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  ->  suc  U. ( rank `  ( A  X.  B ) )  =  ( rank `  ( A  X.  B ) ) )
7872, 77eqtr2d 2316 1  |-  ( ( ( rank `  ( A  u.  B )
)  =  suc  C  /\  ( A  X.  B
)  =/=  (/) )  -> 
( rank `  ( A  X.  B ) )  =  suc  suc  ( rank `  ( A  u.  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    \/ w3o 933    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   _Vcvv 2788    u. cun 3150   (/)c0 3455   U.cuni 3827   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394    X. cxp 4687   ` cfv 5255   rankcrnk 7435
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436  df-rank 7437
  Copyright terms: Public domain W3C validator