MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpu Structured version   Unicode version

Theorem rankxpu 7802
Description: An upper bound on the rank of a cross product. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankxpl.1  |-  A  e. 
_V
rankxpl.2  |-  B  e. 
_V
Assertion
Ref Expression
rankxpu  |-  ( rank `  ( A  X.  B
) )  C_  suc  suc  ( rank `  ( A  u.  B )
)

Proof of Theorem rankxpu
StepHypRef Expression
1 xpsspw 4986 . . 3  |-  ( A  X.  B )  C_  ~P ~P ( A  u.  B )
2 rankxpl.1 . . . . . . 7  |-  A  e. 
_V
3 rankxpl.2 . . . . . . 7  |-  B  e. 
_V
42, 3unex 4707 . . . . . 6  |-  ( A  u.  B )  e. 
_V
54pwex 4382 . . . . 5  |-  ~P ( A  u.  B )  e.  _V
65pwex 4382 . . . 4  |-  ~P ~P ( A  u.  B
)  e.  _V
76rankss 7775 . . 3  |-  ( ( A  X.  B ) 
C_  ~P ~P ( A  u.  B )  -> 
( rank `  ( A  X.  B ) )  C_  ( rank `  ~P ~P ( A  u.  B )
) )
81, 7ax-mp 8 . 2  |-  ( rank `  ( A  X.  B
) )  C_  ( rank `  ~P ~P ( A  u.  B )
)
95rankpw 7769 . . 3  |-  ( rank `  ~P ~P ( A  u.  B ) )  =  suc  ( rank `  ~P ( A  u.  B ) )
104rankpw 7769 . . . 4  |-  ( rank `  ~P ( A  u.  B ) )  =  suc  ( rank `  ( A  u.  B )
)
11 suceq 4646 . . . 4  |-  ( (
rank `  ~P ( A  u.  B )
)  =  suc  ( rank `  ( A  u.  B ) )  ->  suc  ( rank `  ~P ( A  u.  B
) )  =  suc  suc  ( rank `  ( A  u.  B )
) )
1210, 11ax-mp 8 . . 3  |-  suc  ( rank `  ~P ( A  u.  B ) )  =  suc  suc  ( rank `  ( A  u.  B ) )
139, 12eqtri 2456 . 2  |-  ( rank `  ~P ~P ( A  u.  B ) )  =  suc  suc  ( rank `  ( A  u.  B ) )
148, 13sseqtri 3380 1  |-  ( rank `  ( A  X.  B
) )  C_  suc  suc  ( rank `  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   _Vcvv 2956    u. cun 3318    C_ wss 3320   ~Pcpw 3799   suc csuc 4583    X. cxp 4876   ` cfv 5454   rankcrnk 7689
This theorem is referenced by:  rankxplim3  7805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-reg 7560  ax-inf2 7596
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-recs 6633  df-rdg 6668  df-r1 7690  df-rank 7691
  Copyright terms: Public domain W3C validator