MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rb-imdf Structured version   Unicode version

Theorem rb-imdf 1525
Description: The definition of implication, in terms of  \/ and  -.. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rb-imdf  |-  -.  ( -.  ( -.  ( ph  ->  ps )  \/  ( -.  ph  \/  ps )
)  \/  -.  ( -.  ( -.  ph  \/  ps )  \/  ( ph  ->  ps ) ) )

Proof of Theorem rb-imdf
StepHypRef Expression
1 imor 403 . 2  |-  ( (
ph  ->  ps )  <->  ( -.  ph  \/  ps ) )
2 rb-bijust 1524 . 2  |-  ( ( ( ph  ->  ps ) 
<->  ( -.  ph  \/  ps ) )  <->  -.  ( -.  ( -.  ( ph  ->  ps )  \/  ( -.  ph  \/  ps )
)  \/  -.  ( -.  ( -.  ph  \/  ps )  \/  ( ph  ->  ps ) ) ) )
31, 2mpbi 201 1  |-  -.  ( -.  ( -.  ( ph  ->  ps )  \/  ( -.  ph  \/  ps )
)  \/  -.  ( -.  ( -.  ph  \/  ps )  \/  ( ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359
This theorem is referenced by:  re1axmp  1539  re2luk1  1540  re2luk2  1541  re2luk3  1542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-or 361
  Copyright terms: Public domain W3C validator