Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rblem5 Structured version   Unicode version

Theorem rblem5 1535
 Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rblem5

Proof of Theorem rblem5
StepHypRef Expression
1 rb-ax2 1527 . 2
2 rb-ax4 1529 . . . . 5
3 rb-ax3 1528 . . . . 5
42, 3rbsyl 1530 . . . 4
5 rb-ax4 1529 . . . . . . 7
6 rb-ax3 1528 . . . . . . 7
75, 6rbsyl 1530 . . . . . 6
8 rb-ax2 1527 . . . . . 6
97, 8anmp 1525 . . . . 5
109, 4rblem1 1531 . . . 4
114, 10anmp 1525 . . 3
12 rb-ax4 1529 . . . . 5
13 rb-ax3 1528 . . . . 5
1412, 13rbsyl 1530 . . . 4
15 rb-ax2 1527 . . . 4
1614, 15anmp 1525 . . 3
1711, 16rblem1 1531 . 2
181, 17rbsyl 1530 1
 Colors of variables: wff set class Syntax hints:   wn 3   wo 358 This theorem is referenced by:  rblem6  1536  rblem7  1537 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
 Copyright terms: Public domain W3C validator