Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rblem6 Structured version   Unicode version

Theorem rblem6 1536
 Description: Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rblem6.1
Assertion
Ref Expression
rblem6

Proof of Theorem rblem6
StepHypRef Expression
1 rblem6.1 . 2
2 rb-ax4 1529 . . . . . . 7
3 rb-ax3 1528 . . . . . . 7
42, 3rbsyl 1530 . . . . . 6
5 rb-ax2 1527 . . . . . 6
64, 5anmp 1525 . . . . 5
7 rblem3 1533 . . . . 5
86, 7anmp 1525 . . . 4
9 rb-ax2 1527 . . . 4
108, 9anmp 1525 . . 3
11 rblem5 1535 . . 3
1210, 11anmp 1525 . 2
131, 12anmp 1525 1
 Colors of variables: wff set class Syntax hints:   wn 3   wo 358 This theorem is referenced by:  re1axmp  1538  re2luk1  1539  re2luk2  1540 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
 Copyright terms: Public domain W3C validator