MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgeq1 Unicode version

Theorem rdgeq1 6424
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq1  |-  ( F  =  G  ->  rec ( F ,  A )  =  rec ( G ,  A ) )

Proof of Theorem rdgeq1
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq1 5524 . . . . . 6  |-  ( F  =  G  ->  ( F `  ( g `  U. dom  g ) )  =  ( G `
 ( g `  U. dom  g ) ) )
21ifeq2d 3580 . . . . 5  |-  ( F  =  G  ->  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) )  =  if ( Lim  dom  g ,  U. ran  g ,  ( G `  ( g `  U. dom  g ) ) ) )
32ifeq2d 3580 . . . 4  |-  ( F  =  G  ->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  =  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( G `  (
g `  U. dom  g
) ) ) ) )
43mpteq2dv 4107 . . 3  |-  ( F  =  G  ->  (
g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )  =  ( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( G `  ( g `  U. dom  g ) ) ) ) ) )
5 recseq 6389 . . 3  |-  ( ( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )  =  ( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( G `  ( g `  U. dom  g ) ) ) ) )  -> recs ( ( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) )  = recs (
( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( G `  ( g `
 U. dom  g
) ) ) ) ) ) )
64, 5syl 15 . 2  |-  ( F  =  G  -> recs ( ( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) )  = recs (
( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( G `  ( g `
 U. dom  g
) ) ) ) ) ) )
7 df-rdg 6423 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  (
g `  U. dom  g
) ) ) ) ) )
8 df-rdg 6423 . 2  |-  rec ( G ,  A )  = recs ( ( g  e. 
_V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( G `  (
g `  U. dom  g
) ) ) ) ) )
96, 7, 83eqtr4g 2340 1  |-  ( F  =  G  ->  rec ( F ,  A )  =  rec ( G ,  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623   _Vcvv 2788   (/)c0 3455   ifcif 3565   U.cuni 3827    e. cmpt 4077   Lim wlim 4393   dom cdm 4689   ran crn 4690   ` cfv 5255  recscrecs 6387   reccrdg 6422
This theorem is referenced by:  rdgeq12  6426  rdgsucmpt2  6443  frsucmpt2  6452  seqomlem0  6461  omv  6511  oev  6513  dffi3  7184  hsmex  8058  axdc  8148  seqeq2  11050  seqval  11057  trpredlem1  24230  trpredtr  24233  trpredmintr  24234  valtar  25883  neibastop2  26310
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-un 3157  df-if 3566  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-iota 5219  df-fv 5263  df-recs 6388  df-rdg 6423
  Copyright terms: Public domain W3C validator