Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglem1 Structured version   Unicode version

Theorem rdglem1 6665
 Description: Lemma used with the recursive definition generator. This is a trivial lemma that just changes bound variables for later use. (Contributed by NM, 9-Apr-1995.)
Assertion
Ref Expression
rdglem1
Distinct variable groups:   ,,,   ,,,   ,,,   ,   ,,,,

Proof of Theorem rdglem1
StepHypRef Expression
1 eqid 2435 . . 3
21tfrlem3 6630 . 2
3 fveq2 5720 . . . . . . 7
4 reseq2 5133 . . . . . . . 8
54fveq2d 5724 . . . . . . 7
63, 5eqeq12d 2449 . . . . . 6
76cbvralv 2924 . . . . 5
87anbi2i 676 . . . 4
98rexbii 2722 . . 3
109abbii 2547 . 2
112, 10eqtri 2455 1
 Colors of variables: wff set class Syntax hints:   wa 359   wceq 1652  cab 2421  wral 2697  wrex 2698  con0 4573   cres 4872   wfn 5441  cfv 5446 This theorem is referenced by:  rdgseg  6672 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-res 4882  df-iota 5410  df-fun 5448  df-fn 5449  df-fv 5454
 Copyright terms: Public domain W3C validator