MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglim Unicode version

Theorem rdglim 6455
Description: The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
rdglim  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. ( rec ( F ,  A ) " B ) )

Proof of Theorem rdglim
StepHypRef Expression
1 limelon 4471 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 rdgfnon 6447 . . . 4  |-  rec ( F ,  A )  Fn  On
3 fndm 5359 . . . 4  |-  ( rec ( F ,  A
)  Fn  On  ->  dom 
rec ( F ,  A )  =  On )
42, 3ax-mp 8 . . 3  |-  dom  rec ( F ,  A )  =  On
51, 4syl6eleqr 2387 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  dom  rec ( F ,  A ) )
6 rdglimg 6454 . 2  |-  ( ( B  e.  dom  rec ( F ,  A )  /\  Lim  B )  ->  ( rec ( F ,  A ) `  B )  =  U. ( rec ( F ,  A ) " B
) )
75, 6sylancom 648 1  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. ( rec ( F ,  A ) " B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   U.cuni 3843   Oncon0 4408   Lim wlim 4409   dom cdm 4705   "cima 4708    Fn wfn 5266   ` cfv 5271   reccrdg 6438
This theorem is referenced by:  rdglim2  6461  rdgprc  24222  vtarl  25990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator