MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdglim2 Unicode version

Theorem rdglim2 6461
Description: The value of the recursive definition generator at a limit ordinal, in terms of the union of all smaller values. (Contributed by NM, 23-Apr-1995.)
Assertion
Ref Expression
rdglim2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `
 x ) } )
Distinct variable groups:    x, y, A    x, B, y    x, F, y
Allowed substitution hints:    C( x, y)

Proof of Theorem rdglim2
StepHypRef Expression
1 rdglim 6455 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. ( rec ( F ,  A ) " B ) )
2 dfima3 5031 . . . . 5  |-  ( rec ( F ,  A
) " B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  rec ( F ,  A ) ) }
3 df-rex 2562 . . . . . . 7  |-  ( E. x  e.  B  y  =  ( rec ( F ,  A ) `  x )  <->  E. x
( x  e.  B  /\  y  =  ( rec ( F ,  A
) `  x )
) )
4 limord 4467 . . . . . . . . . . 11  |-  ( Lim 
B  ->  Ord  B )
5 ordelord 4430 . . . . . . . . . . . . 13  |-  ( ( Ord  B  /\  x  e.  B )  ->  Ord  x )
65ex 423 . . . . . . . . . . . 12  |-  ( Ord 
B  ->  ( x  e.  B  ->  Ord  x
) )
7 vex 2804 . . . . . . . . . . . . 13  |-  x  e. 
_V
87elon 4417 . . . . . . . . . . . 12  |-  ( x  e.  On  <->  Ord  x )
96, 8syl6ibr 218 . . . . . . . . . . 11  |-  ( Ord 
B  ->  ( x  e.  B  ->  x  e.  On ) )
104, 9syl 15 . . . . . . . . . 10  |-  ( Lim 
B  ->  ( x  e.  B  ->  x  e.  On ) )
11 eqcom 2298 . . . . . . . . . . 11  |-  ( y  =  ( rec ( F ,  A ) `  x )  <->  ( rec ( F ,  A ) `
 x )  =  y )
12 rdgfnon 6447 . . . . . . . . . . . 12  |-  rec ( F ,  A )  Fn  On
13 fnopfvb 5580 . . . . . . . . . . . 12  |-  ( ( rec ( F ,  A )  Fn  On  /\  x  e.  On )  ->  ( ( rec ( F ,  A
) `  x )  =  y  <->  <. x ,  y
>.  e.  rec ( F ,  A ) ) )
1412, 13mpan 651 . . . . . . . . . . 11  |-  ( x  e.  On  ->  (
( rec ( F ,  A ) `  x )  =  y  <->  <. x ,  y >.  e.  rec ( F ,  A ) ) )
1511, 14syl5bb 248 . . . . . . . . . 10  |-  ( x  e.  On  ->  (
y  =  ( rec ( F ,  A
) `  x )  <->  <.
x ,  y >.  e.  rec ( F ,  A ) ) )
1610, 15syl6 29 . . . . . . . . 9  |-  ( Lim 
B  ->  ( x  e.  B  ->  ( y  =  ( rec ( F ,  A ) `  x )  <->  <. x ,  y >.  e.  rec ( F ,  A ) ) ) )
1716pm5.32d 620 . . . . . . . 8  |-  ( Lim 
B  ->  ( (
x  e.  B  /\  y  =  ( rec ( F ,  A ) `
 x ) )  <-> 
( x  e.  B  /\  <. x ,  y
>.  e.  rec ( F ,  A ) ) ) )
1817exbidv 1616 . . . . . . 7  |-  ( Lim 
B  ->  ( E. x ( x  e.  B  /\  y  =  ( rec ( F ,  A ) `  x ) )  <->  E. x
( x  e.  B  /\  <. x ,  y
>.  e.  rec ( F ,  A ) ) ) )
193, 18syl5rbb 249 . . . . . 6  |-  ( Lim 
B  ->  ( E. x ( x  e.  B  /\  <. x ,  y >.  e.  rec ( F ,  A ) )  <->  E. x  e.  B  y  =  ( rec ( F ,  A ) `
 x ) ) )
2019abbidv 2410 . . . . 5  |-  ( Lim 
B  ->  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  rec ( F ,  A ) ) }  =  {
y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x
) } )
212, 20syl5eq 2340 . . . 4  |-  ( Lim 
B  ->  ( rec ( F ,  A )
" B )  =  { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x ) } )
2221unieqd 3854 . . 3  |-  ( Lim 
B  ->  U. ( rec ( F ,  A
) " B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x
) } )
2322adantl 452 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  U. ( rec ( F ,  A
) " B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `  x
) } )
241, 23eqtrd 2328 1  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( rec ( F ,  A
) `  B )  =  U. { y  |  E. x  e.  B  y  =  ( rec ( F ,  A ) `
 x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   <.cop 3656   U.cuni 3843   Ord word 4407   Oncon0 4408   Lim wlim 4409   "cima 4708    Fn wfn 5266   ` cfv 5271   reccrdg 6438
This theorem is referenced by:  rdglim2a  6462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator