Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgprc0 Unicode version

Theorem rdgprc0 24150
Description: The value of the recursive definition generator at  (/) when the base value is a proper class. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rdgprc0  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )

Proof of Theorem rdgprc0
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 0elon 4445 . . . 4  |-  (/)  e.  On
2 rdgval 6433 . . . 4  |-  ( (/)  e.  On  ->  ( rec ( F ,  I ) `
 (/) )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) ) )
31, 2ax-mp 8 . . 3  |-  ( rec ( F ,  I
) `  (/) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) )
4 res0 4959 . . . 4  |-  ( rec ( F ,  I
)  |`  (/) )  =  (/)
54fveq2i 5528 . . 3  |-  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  ( rec ( F ,  I
)  |`  (/) ) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  (/) )
63, 5eqtri 2303 . 2  |-  ( rec ( F ,  I
) `  (/) )  =  ( ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  (/) )
7 eqeq1 2289 . . . . . . . 8  |-  ( g  =  (/)  ->  ( g  =  (/)  <->  (/)  =  (/) ) )
8 dmeq 4879 . . . . . . . . . 10  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
9 limeq 4404 . . . . . . . . . 10  |-  ( dom  g  =  dom  (/)  ->  ( Lim  dom  g  <->  Lim  dom  (/) ) )
108, 9syl 15 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( Lim 
dom  g  <->  Lim  dom  (/) ) )
11 rneq 4904 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ran  g  =  ran  (/) )
1211unieqd 3838 . . . . . . . . 9  |-  ( g  =  (/)  ->  U. ran  g  =  U. ran  (/) )
13 id 19 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  g  =  (/) )
148unieqd 3838 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  U. dom  g  =  U. dom  (/) )
1513, 14fveq12d 5531 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( g `
 U. dom  g
)  =  ( (/) ` 
U. dom  (/) ) )
1615fveq2d 5529 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( F `
 ( g `  U. dom  g ) )  =  ( F `  ( (/) `  U. dom  (/) ) ) )
1710, 12, 16ifbieq12d 3587 . . . . . . . 8  |-  ( g  =  (/)  ->  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) )  =  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )
187, 17ifbieq2d 3585 . . . . . . 7  |-  ( g  =  (/)  ->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) )  =  if (
(/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) ) )
1918eleq1d 2349 . . . . . 6  |-  ( g  =  (/)  ->  ( if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  e.  _V  <->  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V ) )
20 eqid 2283 . . . . . . 7  |-  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  =  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )
2120dmmpt 5168 . . . . . 6  |-  dom  (
g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) )  =  { g  e.  _V  |  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) )  e.  _V }
2219, 21elrab2 2925 . . . . 5  |-  ( (/)  e.  dom  ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  <->  ( (/)  e.  _V  /\  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/) ,  U. ran  (/) ,  ( F `
 ( (/) `  U. dom  (/) ) ) ) )  e.  _V )
)
23 eqid 2283 . . . . . . . . 9  |-  (/)  =  (/)
24 iftrue 3571 . . . . . . . . 9  |-  ( (/)  =  (/)  ->  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  =  I )
2523, 24ax-mp 8 . . . . . . . 8  |-  if (
(/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  =  I
2625eleq1i 2346 . . . . . . 7  |-  ( if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V  <->  I  e.  _V )
2726biimpi 186 . . . . . 6  |-  ( if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V  ->  I  e.  _V )
2827adantl 452 . . . . 5  |-  ( (
(/)  e.  _V  /\  if ( (/)  =  (/) ,  I ,  if ( Lim  dom  (/)
,  U. ran  (/) ,  ( F `  ( (/) ` 
U. dom  (/) ) ) ) )  e.  _V )  ->  I  e.  _V )
2922, 28sylbi 187 . . . 4  |-  ( (/)  e.  dom  ( g  e. 
_V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  ->  I  e.  _V )
3029con3i 127 . . 3  |-  ( -.  I  e.  _V  ->  -.  (/)  e.  dom  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) )
31 ndmfv 5552 . . 3  |-  ( -.  (/)  e.  dom  ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) )  ->  (
( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  (/) )  =  (/) )
3230, 31syl 15 . 2  |-  ( -.  I  e.  _V  ->  ( ( g  e.  _V  |->  if ( g  =  (/) ,  I ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `
 U. dom  g
) ) ) ) ) `  (/) )  =  (/) )
336, 32syl5eq 2327 1  |-  ( -.  I  e.  _V  ->  ( rec ( F ,  I ) `  (/) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   ifcif 3565   U.cuni 3827    e. cmpt 4077   Oncon0 4392   Lim wlim 4393   dom cdm 4689   ran crn 4690    |` cres 4691   ` cfv 5255   reccrdg 6422
This theorem is referenced by:  rdgprc  24151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423
  Copyright terms: Public domain W3C validator