MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptf Unicode version

Theorem rdgsucmptf 6622
Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1  |-  F/_ x A
rdgsucmptf.2  |-  F/_ x B
rdgsucmptf.3  |-  F/_ x D
rdgsucmptf.4  |-  F  =  rec ( ( x  e.  _V  |->  C ) ,  A )
rdgsucmptf.5  |-  ( x  =  ( F `  B )  ->  C  =  D )
Assertion
Ref Expression
rdgsucmptf  |-  ( ( B  e.  On  /\  D  e.  V )  ->  ( F `  suc  B )  =  D )

Proof of Theorem rdgsucmptf
StepHypRef Expression
1 rdgsuc 6618 . . 3  |-  ( B  e.  On  ->  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  B
) ) )
2 rdgsucmptf.4 . . . 4  |-  F  =  rec ( ( x  e.  _V  |->  C ) ,  A )
32fveq1i 5669 . . 3  |-  ( F `
 suc  B )  =  ( rec (
( x  e.  _V  |->  C ) ,  A
) `  suc  B )
42fveq1i 5669 . . . 4  |-  ( F `
 B )  =  ( rec ( ( x  e.  _V  |->  C ) ,  A ) `
 B )
54fveq2i 5671 . . 3  |-  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) )  =  ( ( x  e.  _V  |->  C ) `
 ( rec (
( x  e.  _V  |->  C ) ,  A
) `  B )
)
61, 3, 53eqtr4g 2444 . 2  |-  ( B  e.  On  ->  ( F `  suc  B )  =  ( ( x  e.  _V  |->  C ) `
 ( F `  B ) ) )
7 fvex 5682 . . 3  |-  ( F `
 B )  e. 
_V
8 nfmpt1 4239 . . . . . . 7  |-  F/_ x
( x  e.  _V  |->  C )
9 rdgsucmptf.1 . . . . . . 7  |-  F/_ x A
108, 9nfrdg 6608 . . . . . 6  |-  F/_ x rec ( ( x  e. 
_V  |->  C ) ,  A )
112, 10nfcxfr 2520 . . . . 5  |-  F/_ x F
12 rdgsucmptf.2 . . . . 5  |-  F/_ x B
1311, 12nffv 5675 . . . 4  |-  F/_ x
( F `  B
)
14 rdgsucmptf.3 . . . 4  |-  F/_ x D
15 rdgsucmptf.5 . . . 4  |-  ( x  =  ( F `  B )  ->  C  =  D )
16 eqid 2387 . . . 4  |-  ( x  e.  _V  |->  C )  =  ( x  e. 
_V  |->  C )
1713, 14, 15, 16fvmptf 5760 . . 3  |-  ( ( ( F `  B
)  e.  _V  /\  D  e.  V )  ->  ( ( x  e. 
_V  |->  C ) `  ( F `  B ) )  =  D )
187, 17mpan 652 . 2  |-  ( D  e.  V  ->  (
( x  e.  _V  |->  C ) `  ( F `  B )
)  =  D )
196, 18sylan9eq 2439 1  |-  ( ( B  e.  On  /\  D  e.  V )  ->  ( F `  suc  B )  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   F/_wnfc 2510   _Vcvv 2899    e. cmpt 4207   Oncon0 4522   suc csuc 4524   ` cfv 5394   reccrdg 6603
This theorem is referenced by:  rdgsucmpt2  6624  rdgsucmpt  6625
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-recs 6569  df-rdg 6604
  Copyright terms: Public domain W3C validator