MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptnf Unicode version

Theorem rdgsucmptnf 6442
Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class  D is a proper class). This is a technical lemma that can be used together with rdgsucmptf 6441 to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1  |-  F/_ x A
rdgsucmptf.2  |-  F/_ x B
rdgsucmptf.3  |-  F/_ x D
rdgsucmptf.4  |-  F  =  rec ( ( x  e.  _V  |->  C ) ,  A )
rdgsucmptf.5  |-  ( x  =  ( F `  B )  ->  C  =  D )
Assertion
Ref Expression
rdgsucmptnf  |-  ( -.  D  e.  _V  ->  ( F `  suc  B
)  =  (/) )

Proof of Theorem rdgsucmptnf
StepHypRef Expression
1 rdgsucmptf.4 . . 3  |-  F  =  rec ( ( x  e.  _V  |->  C ) ,  A )
21fveq1i 5526 . 2  |-  ( F `
 suc  B )  =  ( rec (
( x  e.  _V  |->  C ) ,  A
) `  suc  B )
3 rdgdmlim 6430 . . . . 5  |-  Lim  dom  rec ( ( x  e. 
_V  |->  C ) ,  A )
4 limsuc 4640 . . . . 5  |-  ( Lim 
dom  rec ( ( x  e.  _V  |->  C ) ,  A )  -> 
( B  e.  dom  rec ( ( x  e. 
_V  |->  C ) ,  A )  <->  suc  B  e. 
dom  rec ( ( x  e.  _V  |->  C ) ,  A ) ) )
53, 4ax-mp 8 . . . 4  |-  ( B  e.  dom  rec (
( x  e.  _V  |->  C ) ,  A
)  <->  suc  B  e.  dom  rec ( ( x  e. 
_V  |->  C ) ,  A ) )
6 rdgsucg 6436 . . . . . . 7  |-  ( B  e.  dom  rec (
( x  e.  _V  |->  C ) ,  A
)  ->  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  B
) ) )
71fveq1i 5526 . . . . . . . 8  |-  ( F `
 B )  =  ( rec ( ( x  e.  _V  |->  C ) ,  A ) `
 B )
87fveq2i 5528 . . . . . . 7  |-  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) )  =  ( ( x  e.  _V  |->  C ) `
 ( rec (
( x  e.  _V  |->  C ) ,  A
) `  B )
)
96, 8syl6eqr 2333 . . . . . 6  |-  ( B  e.  dom  rec (
( x  e.  _V  |->  C ) ,  A
)  ->  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  suc  B )  =  ( ( x  e.  _V  |->  C ) `  ( F `
 B ) ) )
10 nfmpt1 4109 . . . . . . . . . 10  |-  F/_ x
( x  e.  _V  |->  C )
11 rdgsucmptf.1 . . . . . . . . . 10  |-  F/_ x A
1210, 11nfrdg 6427 . . . . . . . . 9  |-  F/_ x rec ( ( x  e. 
_V  |->  C ) ,  A )
131, 12nfcxfr 2416 . . . . . . . 8  |-  F/_ x F
14 rdgsucmptf.2 . . . . . . . 8  |-  F/_ x B
1513, 14nffv 5532 . . . . . . 7  |-  F/_ x
( F `  B
)
16 rdgsucmptf.3 . . . . . . 7  |-  F/_ x D
17 rdgsucmptf.5 . . . . . . 7  |-  ( x  =  ( F `  B )  ->  C  =  D )
18 eqid 2283 . . . . . . 7  |-  ( x  e.  _V  |->  C )  =  ( x  e. 
_V  |->  C )
1915, 16, 17, 18fvmptnf 5617 . . . . . 6  |-  ( -.  D  e.  _V  ->  ( ( x  e.  _V  |->  C ) `  ( F `  B )
)  =  (/) )
209, 19sylan9eqr 2337 . . . . 5  |-  ( ( -.  D  e.  _V  /\  B  e.  dom  rec ( ( x  e. 
_V  |->  C ) ,  A ) )  -> 
( rec ( ( x  e.  _V  |->  C ) ,  A ) `
 suc  B )  =  (/) )
2120ex 423 . . . 4  |-  ( -.  D  e.  _V  ->  ( B  e.  dom  rec ( ( x  e. 
_V  |->  C ) ,  A )  ->  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  suc  B )  =  (/) ) )
225, 21syl5bir 209 . . 3  |-  ( -.  D  e.  _V  ->  ( suc  B  e.  dom  rec ( ( x  e. 
_V  |->  C ) ,  A )  ->  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  suc  B )  =  (/) ) )
23 ndmfv 5552 . . 3  |-  ( -. 
suc  B  e.  dom  rec ( ( x  e. 
_V  |->  C ) ,  A )  ->  ( rec ( ( x  e. 
_V  |->  C ) ,  A ) `  suc  B )  =  (/) )
2422, 23pm2.61d1 151 . 2  |-  ( -.  D  e.  _V  ->  ( rec ( ( x  e.  _V  |->  C ) ,  A ) `  suc  B )  =  (/) )
252, 24syl5eq 2327 1  |-  ( -.  D  e.  _V  ->  ( F `  suc  B
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   F/_wnfc 2406   _Vcvv 2788   (/)c0 3455    e. cmpt 4077   Lim wlim 4393   suc csuc 4394   dom cdm 4689   ` cfv 5255   reccrdg 6422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423
  Copyright terms: Public domain W3C validator