MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgval Unicode version

Theorem rdgval 6433
Description: Value of the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
rdgval  |-  ( B  e.  On  ->  ( rec ( F ,  A
) `  B )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
Distinct variable groups:    g, F    A, g
Allowed substitution hint:    B( g)

Proof of Theorem rdgval
StepHypRef Expression
1 df-rdg 6423 . 2  |-  rec ( F ,  A )  = recs ( ( g  e. 
_V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  (
g `  U. dom  g
) ) ) ) ) )
21tfr2 6414 1  |-  ( B  e.  On  ->  ( rec ( F ,  A
) `  B )  =  ( ( g  e.  _V  |->  if ( g  =  (/) ,  A ,  if ( Lim  dom  g ,  U. ran  g ,  ( F `  ( g `  U. dom  g ) ) ) ) ) `  ( rec ( F ,  A
)  |`  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   ifcif 3565   U.cuni 3827    e. cmpt 4077   Oncon0 4392   Lim wlim 4393   dom cdm 4689   ran crn 4690    |` cres 4691   ` cfv 5255   reccrdg 6422
This theorem is referenced by:  rdgprc0  24150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423
  Copyright terms: Public domain W3C validator